# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.api import _cell_graph_executor from mindspore.ops import composite as C from mindspore.ops import operations as P from mindspore.parallel._utils import _reset_op_id as reset_op_id from tests.ut.python.ops.test_math_ops import VirtualLoss grad_all = C.GradOperation(get_all=True) class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y, b): predict = self.network(x, y, b) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y, b): return grad_all(self.network)(x, y, b) # core dump, step_auto_parallel should SetInputs for transpose axis def test_two_matmul_transpose(): class Net(nn.Cell): def __init__(self): super().__init__() self.matmul1 = P.MatMul() self.matmul2 = P.MatMul() self.transpose1 = P.Transpose() self.transpose2 = P.Transpose() def construct(self, x, y, b): out = self.matmul1(x, y) out = self.matmul2(out, b) out = self.transpose1(out, (1, 0)) out = self.transpose2(out, (1, 0)) return out size = 16 context.set_auto_parallel_context(device_num=size, global_rank=0) x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) net = NetWithLoss(Net()) context.set_auto_parallel_context(parallel_mode="auto_parallel") net.set_auto_parallel() reset_op_id() net.set_train() _cell_graph_executor.compile(net, x, y, b, phase='train') strategies = _cell_graph_executor._get_shard_strategy(net) print(strategies) expected_strategies = {'Default/network-Net/Transpose-op0': [[1, 16]], 'Default/network-Net/Transpose-op1': [[16, 1]], 'Default/network-Net/MatMul-op3': [[16, 1], [1, 1]], 'Default/network-Net/MatMul-op2': [[16, 1], [1, 1]]} assert strategies == expected_strategies