# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms from mindspore import context, Tensor, Parameter from mindspore.common.api import _cell_graph_executor from mindspore.nn import Cell, TrainOneStepCell, Momentum from mindspore.ops import operations as P class Net(Cell): def __init__(self, mul_weight, batch_matmul_weight, transpose_b=False, strategy1=None, strategy2=None): super().__init__() self.mul = P.Mul().shard(strategy1) self.batch_matmul = P.BatchMatMul(transpose_b=transpose_b).shard(strategy2) self.mul_weight = Parameter(mul_weight, "w1") self.batch_matmul_weight = Parameter(batch_matmul_weight, "w2") def construct(self, x, b): out = self.mul(x, self.mul_weight) out = self.batch_matmul(out, self.batch_matmul_weight) return out _x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) _w1 = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) _w2 = Tensor(np.ones([128, 32, 32]), dtype=ms.float32) _b = Tensor(np.ones([128, 64, 16]), dtype=ms.float32) def compile_net(net): optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, _x, _b) context.reset_auto_parallel_context() def test_batch_matmul_data_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((16, 1, 1), (16, 1, 1)) strategy2 = ((16, 1, 1), (16, 1, 1)) net = Net(_w1, _w2, False, strategy1, strategy2) compile_net(net) def test_batch_matmul_model_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((1, 1, 1), (1, 1, 1)) strategy2 = ((1, 1, 1), (1, 1, 16)) net = Net(_w1, _w2, False, strategy1, strategy2) compile_net(net) def test_batch_matmul_hybrid_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((2, 2, 2), (2, 2, 2)) strategy2 = ((2, 2, 2), (2, 2, 2)) net = Net(_w1, _w2, False, strategy1, strategy2) compile_net(net) def test_batch_matmul_auto_parallel(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0) net = Net(_w1, _w2, False) compile_net(net) def test_batch_matmul_repeat_calc(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((2, 2, 4), (2, 2, 4)) strategy2 = ((1, 2, 2), (1, 2, 2)) net = Net(_w1, _w2, False, strategy1, strategy2) compile_net(net) def test_batch_matmul_transpose_b(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((2, 2, 4), (2, 2, 4)) strategy2 = ((1, 2, 2), (1, 2, 2)) net = Net(_w1, _w2, True, strategy1, strategy2) compile_net(net)