# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.context as context from mindspore import Tensor, Parameter import mindspore.nn as nn from mindspore.common.api import _cell_graph_executor from mindspore.nn import TrainOneStepCell, Momentum from mindspore.ops import operations as P class Net(nn.Cell): def __init__(self, wi, wo, stra1=None, stra2=None, stra3=None, stra4=None, stra5=None, stra6=None): super(Net, self).__init__() self.relu = P.ReLU().shard(stra1) self.transpose = P.Transpose().shard(stra2) self.wi = Parameter(wi, "wi") self.batch_mm = P.BatchMatMul().shard(stra3) self.wo = Parameter(wo, "wo") self.batch_mm2 = P.BatchMatMul().shard(stra4) self.transpose2 = P.Transpose().shard(stra5) self.relu2 = P.ReLU().shard(stra6) self.reshape = P.Reshape() self.reshape2 = P.Reshape() def construct(self, x): output = self.relu(x) trans_out = self.transpose(output, (2, 0, 3, 1)) output = self.reshape(trans_out, (trans_out.shape[0], trans_out.shape[1]*trans_out.shape[2], trans_out.shape[3])) output = self.batch_mm(output, self.wi) output = self.batch_mm2(output, self.wo) output = self.reshape2(output, trans_out.shape) output = self.transpose2(output, (1, 3, 0, 2)) output = self.relu2(output) return output _x = Tensor(np.ones([32, 16, 48, 128]), dtype=ms.float32) _wi = Tensor(np.ones([48, 16, 64]), dtype=ms.float32) _wo = Tensor(np.ones([48, 64, 16]), dtype=ms.float32) def compile_net(net): context.set_context(mode=context.GRAPH_MODE) optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, _x) context.reset_auto_parallel_context() def test_batchmm(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, enable_alltoall=True, global_rank=0) stra1 = ((8, 1, 1, 1),) stra2 = ((8, 1, 1, 1),) stra3 = ((8, 1, 1), (8, 1, 1)) stra4 = ((8, 1, 1), (8, 1, 1)) stra5 = ((8, 1, 1, 1),) stra6 = ((8, 1, 1, 1),) net = Net(_wi, _wo, stra1=stra1, stra2=stra2, stra3=stra3, stra4=stra4, stra5=stra5, stra6=stra6) compile_net(net) def test_batchmm2(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", enable_alltoall=True, device_num=32, global_rank=0) stra1 = ((4, 1, 1, 1),) stra2 = ((4, 1, 1, 1),) stra3 = ((4, 1, 1), (4, 1, 8)) stra4 = ((4, 1, 8), (4, 8, 1)) stra5 = ((4, 1, 1, 1),) stra6 = ((4, 1, 1, 1),) net = Net(_wi, _wo, stra1=stra1, stra2=stra2, stra3=stra3, stra4=stra4, stra5=stra5, stra6=stra6) compile_net(net)