# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.train.model import Model from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter from mindspore.ops import operations as P class DatasetLenet(): def __init__(self, data, label, length=3): self.data = data self.label = label self.index = 1 self.length = length def __iter__(self): return self def __next__(self): if self.index >= self.length: raise StopIteration self.index += 1 return self.data, self.label def reset(self): self.index = 0 def get_dataset_size(self): return 32 def get_repeat_count(self): return 1 def get_batch_size(self): return 32 def create_tuple_iterator(self, num_epochs=1, do_copy=True): return self class MatMulCell(nn.Cell): def __init__(self): super().__init__() self.matmul = P.MatMul() self.relu = P.ReLU() self.weight = Parameter(initializer("ones", [64, 64]), name="param1") def construct(self, x): out = self.matmul(x, self.weight) out = self.relu(out) return out class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().shard(strategy1) self.weight = Parameter(initializer("ones", [64, 64]), name="param") self.cell1 = MatMulCell() self.cell2 = MatMulCell() self.cell3 = MatMulCell() self.cell4 = MatMulCell() self.relu = P.ReLU().shard(strategy2) self.reduce = P.ReduceSum() def construct(self, x, y): out = self.matmul(x, self.weight) if self.reduce(y) == 1.0: out = self.cell1(out) elif self.reduce(y) == 2.0: out = self.cell2(out) elif self.reduce(y) == 3.0: out = self.cell3(out) else: out = self.cell4(out) out = self.relu(out) out = out + x return out def test_control_flow(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 4), (4, 1)) strategy2 = ((8, 1),) net = Net(strategy1, strategy2) data = Tensor(np.ones([128, 64]), dtype=ms.float32) label = Tensor(np.ones([8, 8]), dtype=ms.float32) dataset = DatasetLenet(data, label, 3) opt = nn.Lamb(net.trainable_params(), learning_rate=0.01) model = Model(net, optimizer=opt) model.train(2, dataset, dataset_sink_mode=False)