# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pytest import mindspore as ms from mindspore import context, Tensor, Parameter from mindspore.common.api import _cell_graph_executor from mindspore.nn import Cell, TrainOneStepCell, Momentum from mindspore.ops import operations as P class Net(Cell): def __init__(self, conv2d_weight, out_channel, kernel_size, pad_mode, stride, dilation=1, group=1, strategy1=None, strategy2=None): super().__init__() self.conv2d = P.Conv2D(out_channel=out_channel, kernel_size=kernel_size, pad_mode=pad_mode, stride=stride, dilation=dilation, group=group).shard(strategy1) self.neg = P.Neg().shard(strategy2) self.conv2d_weight = Parameter(conv2d_weight, "w1") def construct(self, x, b): out = self.conv2d(x, self.conv2d_weight) out = self.neg(out) return out _x = Tensor(np.ones([32, 16, 8, 8]), dtype=ms.float32) _x2 = Tensor(np.ones([32, 16, 10, 10]), dtype=ms.float32) _w0 = Tensor(np.ones([8, 16, 1, 1]), dtype=ms.float32) _w1 = Tensor(np.ones([8, 16, 2, 2]), dtype=ms.float32) _w2 = Tensor(np.ones([8, 16, 3, 3]), dtype=ms.float32) _w3 = Tensor(np.ones([8, 16, 5, 5]), dtype=ms.float32) _w4 = Tensor(np.ones([8, 8, 2, 2]), dtype=ms.float32) _b = Tensor(np.ones([32, 16, 8, 8]), dtype=ms.float32) def compile_net(net, input_x=_x): optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, input_x, _b) context.reset_auto_parallel_context() def test_conv2d_data_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1)) strategy2 = ((8, 1, 1, 1),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) compile_net(net) def test_conv2d_data_parallel_invalid_stride(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1)) strategy2 = ((8, 1, 1, 1),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=(2, 2, 1, 1), strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net) def test_conv2d_data_parallel_dilation(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1)) strategy2 = ((8, 1, 1, 1),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, dilation=2, strategy1=strategy1, strategy2=strategy2) compile_net(net) def test_conv2d_data_parallel_group(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1)) strategy2 = ((8, 1, 1, 1),) net = Net(_w4, out_channel=8, kernel_size=2, pad_mode="same", stride=1, group=2, strategy1=strategy1, strategy2=strategy2) compile_net(net) def test_conv2d_model_parallel1(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 1, 1), (2, 2, 1, 1)) strategy2 = ((8, 1, 1, 1),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) compile_net(net) def test_conv2d_model_parallel_dilation(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 1, 1), (2, 2, 1, 1)) strategy2 = ((8, 1, 1, 1),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, dilation=2, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net) def test_conv2d_model_parallel_group(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 1, 1), (2, 2, 1, 1)) strategy2 = ((8, 1, 1, 1),) net = Net(_w4, out_channel=8, kernel_size=2, pad_mode="same", stride=1, group=2, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net) def test_conv2d_model_parallel2(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=32, global_rank=0) strategy1 = ((2, 2, 2, 2), (2, 2, 1, 1)) strategy2 = ((32, 1, 1, 1),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=2, strategy1=strategy1, strategy2=strategy2) compile_net(net) def test_conv2d_model_parallel3(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 1, 1, 4), (1, 1, 1, 1)) strategy2 = ((2, 1, 1, 4),) net = Net(_w2, out_channel=8, kernel_size=3, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) compile_net(net) def test_conv2d_auto_parallel(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) net = Net(_w2, out_channel=8, kernel_size=3, pad_mode="same", stride=1) compile_net(net) def test_conv2d_model_parallel4(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=32, global_rank=0) strategy1 = ((2, 2, 1, 4), (2, 2, 1, 1)) strategy2 = ((2, 2, 1, 4),) net = Net(_w2, out_channel=8, kernel_size=3, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) compile_net(net) def test_conv2d_left_and_right_no_need_to_send(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 1, 1, 4), (1, 1, 1, 1)) strategy2 = ((2, 1, 1, 4),) net = Net(_w2, out_channel=8, kernel_size=3, pad_mode="same", stride=2, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net) def test_conv2d_kernel_size_larger_than_stride_and_split_h(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=32, global_rank=0) strategy1 = ((2, 2, 4, 1), (2, 2, 1, 1)) strategy2 = ((2, 2, 4, 1),) net = Net(_w2, out_channel=8, kernel_size=3, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net) def test_conv2d_valid_mode_kernel_size_larger_than_stride(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 1, 1, 2), (1, 1, 1, 1)) strategy2 = ((2, 1, 1, 4),) net = Net(_w2, out_channel=8, kernel_size=3, pad_mode="valid", stride=1, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net) def test_conv2d_output_can_not_divisible_by_strategy(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 1, 1, 8), (1, 1, 1, 1)) strategy2 = ((1, 1, 1, 8),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=2, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net) def test_conv2d_output_can_not_divisible_by_strategy2(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 1, 8, 1), (1, 1, 1, 1)) strategy2 = ((1, 1, 1, 8),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=2, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net) def test_split_kernel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 1, 1, 1), (1, 1, 2, 2)) strategy2 = ((1, 1, 1, 8),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=2, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net) def test_kernel_size_smaller_than_stride_and_slice_can_not_divisible_by_stride_same_mode(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 1, 1, 2), (1, 1, 1, 1)) strategy2 = ((1, 1, 1, 8),) net = Net(_w0, out_channel=8, kernel_size=1, pad_mode="same", stride=3, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net, _x2) def test_kernel_size_smaller_than_stride_and_slice_can_not_divisible_by_stride_valid_mode(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 1, 1, 2), (1, 1, 1, 1)) strategy2 = ((1, 1, 1, 8),) net = Net(_w0, out_channel=8, kernel_size=1, pad_mode="valid", stride=3, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net, _x2) def test_h_dimension_kernel_size_smaller_than_stride_and_slice_is_not_divisible_by_stride_same_mode(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 1, 2, 1), (1, 1, 1, 1)) strategy2 = ((1, 1, 1, 8),) net = Net(_w0, out_channel=8, kernel_size=1, pad_mode="same", stride=3, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net, _x2) def test_h_dimension_kernel_size_smaller_than_stride_and_slice_can_not_divisible_by_stride_valid_mode(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 1, 2, 1), (1, 1, 1, 1)) strategy2 = ((1, 1, 1, 8),) net = Net(_w0, out_channel=8, kernel_size=1, pad_mode="valid", stride=3, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net, _x2) def test_split_h_dimension_and_pad_mode_is_pad(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 1, 2, 1), (1, 1, 1, 1)) strategy2 = ((1, 1, 1, 8),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="pad", stride=2, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net) def test_kernel_size_larger_than_stride_and_input_can_not_divisible_by_stride(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 1, 1, 2), (1, 1, 1, 1)) strategy2 = ((1, 1, 1, 8),) net = Net(_w3, out_channel=8, kernel_size=5, pad_mode="same", stride=3, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net, _x2) def test_kernel_size_larger_than_stride_and_slice_too_small(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 1, 1, 8), (1, 1, 1, 1)) strategy2 = ((1, 1, 1, 8),) net = Net(_w3, out_channel=8, kernel_size=5, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net) def test_conv2d_same_mode_overlap_size_equal_to_slice_shape(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 1, 1, 8), (1, 1, 1, 1)) strategy2 = ((2, 1, 1, 4),) net = Net(_w2, out_channel=8, kernel_size=3, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net) def test_kernel_size_larger_than_stride_and_left_pad_is_0(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 1, 1, 4), (1, 1, 1, 1)) strategy2 = ((1, 1, 1, 8),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net)