# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.api import _cell_graph_executor from mindspore.ops import composite as C from mindspore.ops import operations as P from tests.ut.python.ops.test_math_ops import VirtualLoss grad_all = C.GradOperation(get_all=True) class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y): predict = self.network(x, y) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y): return grad_all(self.network)(x, y) class Net(nn.Cell): def __init__(self, axis=0, strategy1=None, strategy2=None, shape=None, target=""): super().__init__() if shape is None: shape = [64, 64] self.gatherv2 = P.Gather().shard(strategy1).add_prim_attr("primitive_target", target) self.mul = P.Mul().shard(strategy2) self.index = Tensor(np.ones(shape), dtype=ms.int32) self.axis = axis def construct(self, x, y): out = self.gatherv2(x, self.index, self.axis) out = self.mul(out, y) return out def test_gatherv2_semi_auto0(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy1 = ((1, 8), (1, 1)) strategy2 = ((4, 2, 1), (4, 2, 1)) net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2))) net.set_auto_parallel() x = Tensor(np.ones([64, 64]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_gatherv2_semi_auto1(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy1 = ((8, 1), (1, 1)) strategy2 = ((4, 2, 1), (4, 2, 1)) net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2))) net.set_auto_parallel() x = Tensor(np.ones([64, 64]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_gatherv2_semi_auto2(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy1 = ((2, 4), (1, 1)) strategy2 = ((4, 2, 1), (4, 2, 1)) net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2))) net.set_auto_parallel() x = Tensor(np.ones([64, 64]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_gatherv2_semi_auto3(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy1 = ((1, 8), (1, 1)) strategy2 = ((4, 2, 1), (4, 2, 1)) net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2))) net.set_auto_parallel() x = Tensor(np.ones([64, 64]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_gatherv2_semi_auto4(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy1 = ((8, 1), (1, 1)) strategy2 = ((4, 2, 1), (4, 2, 1)) net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2))) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_gatherv2_semi_auto5(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy1 = ((2, 4), (1, 1)) strategy2 = ((4, 2, 1), (4, 2, 1)) net = GradWrap(NetWithLoss(Net(1, strategy1, strategy2))) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_gatherv2_semi_auto6(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy2 = ((4, 2, 1), (4, 2, 1)) net = GradWrap(NetWithLoss(Net(0, None, strategy2))) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_gatherv2_semi_auto7(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy2 = ((4, 2, 1), (4, 2, 1)) net = GradWrap(NetWithLoss(Net(1, None, strategy2))) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_gatherv2_semi_auto8(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy1 = ((8,), (1, 1)) strategy2 = ((4, 2), (4, 2)) net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2))) net.set_auto_parallel() x = Tensor(np.ones([64]), dtype=ms.float32) y = Tensor(np.ones([64, 64]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_gatherv2_forward_all_reduce(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy1 = ((8, 1), (1, 1)) strategy2 = ((2, 4, 1), (2, 4, 1)) net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2, shape=[2, 64]))) net.set_auto_parallel() x = Tensor(np.ones([64, 64]), dtype=ms.float32) y = Tensor(np.ones([2, 64, 64]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_gatherv2_shard_batch_and_axis(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") strategy1 = ((4, 1), (2, 1)) strategy2 = ((2, 4, 1), (2, 4, 1)) net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2, shape=[2, 64]))) net.set_auto_parallel() x = Tensor(np.ones([64, 64]), dtype=ms.float32) y = Tensor(np.ones([2, 64, 64]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_gatherv2_split_axis_0_repeat_calc(): context.set_auto_parallel_context(device_num=8, global_rank=7, parallel_mode="semi_auto_parallel") strategy1 = ((4, 1), (1, 1)) strategy2 = ((2, 4, 1), (2, 4, 1)) net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2, shape=[2, 64]))) net.set_auto_parallel() x = Tensor(np.ones([64, 64]), dtype=ms.float32) y = Tensor(np.ones([2, 64, 64]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_gatherv2_auto0(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel") net = GradWrap(NetWithLoss(Net(0))) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y) def test_gatherv2_auto1(): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel") net = GradWrap(NetWithLoss(Net(1))) net.set_auto_parallel() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32) net.set_train() _cell_graph_executor.compile(net, x, y)