# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common import dtype as mstype from mindspore.common.parameter import ParameterTuple from mindspore.communication.management import init from mindspore.nn import Dense, Cell from mindspore.nn.loss.loss import LossBase from mindspore.nn.optim import Momentum from mindspore.ops import composite as C from mindspore.ops import operations as P from mindspore.train import Model from mindspore.context import ParallelMode from mindspore.communication._comm_helper import GlobalComm context.set_context(mode=context.GRAPH_MODE) device_number = 32 batch_size_per_device = 128 class Dataset(): def __init__(self, predict, length=3): self.predict = predict self.index = 0 self.length = length def __iter__(self): return self def __next__(self): if self.index >= self.length: raise StopIteration self.index += 1 return (self.predict,) def reset(self): self.index = 0 def get_dataset_size(self): return 128 def get_repeat_count(self): return 1 def create_tuple_iterator(self, num_epochs=-1, do_copy=True): return self class GatherV2(LossBase): def __init__(self, index_dim, strategy, index_size=16): super(GatherV2, self).__init__() self.pow = P.Pow() emb1_list = 21 emb2_list = 2 if index_dim == 1: emb_list = list(range(index_size)) emb1_list = emb_list[0::2] emb2_list = emb_list[1::2] if index_dim == 2: emb_list = np.arange(index_size * 16) emb1_list = np.reshape(emb_list[0::2], (int(index_size / 2), 16)) emb2_list = np.reshape(emb_list[1::2], (int(index_size / 2), 16)) self.emb1_param = Tensor(emb1_list, dtype=mstype.int32) self.emb2_param = Tensor(emb2_list, dtype=mstype.int32) self.gatherv2 = P.Gather().shard(strategy).add_prim_attr("data_parallel", True) def construct(self, nembeddings): emb1 = self.gatherv2(nembeddings, self.emb1_param, 0) emb2 = self.gatherv2(nembeddings, self.emb2_param, 0) return self.pow((emb1 - emb2), 2.0) def fc_with_initialize(input_channels, out_channels): return Dense(input_channels, out_channels) class BuildTrainNetwork(nn.Cell): def __init__(self, network, criterion): super(BuildTrainNetwork, self).__init__() self.network = network self.criterion = criterion def construct(self, input_data): embeddings = self.network(input_data) loss = self.criterion(embeddings) return loss class TrainOneStepCell(Cell): def __init__(self, network, optimizer, sens=1.0): super(TrainOneStepCell, self).__init__(auto_prefix=False) self.network = network self.network.add_flags(defer_inline=True) self.weights = ParameterTuple(network.trainable_params()) self.optimizer = optimizer self.grad = C.GradOperation(get_by_list=True, sens_param=True) self.sens = sens def construct(self, data): weights = self.weights loss = self.network(data) sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens) grads = self.grad(self.network, weights)(data, sens) self.optimizer(grads) return loss def net_trains(criterion, rank): GlobalComm.CHECK_ENVS = False init() GlobalComm.CHECK_ENVS = True lr = 0.1 momentum = 0.9 max_epoch = 20 input_channels = 256 out_channels = 512 context.set_context(mode=context.GRAPH_MODE) context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=device_number, global_rank=rank) predict = Tensor(np.ones([batch_size_per_device, input_channels]), dtype=ms.float32) dataset = Dataset(predict, 4) network = fc_with_initialize(input_channels, out_channels) network.set_train() train_network = BuildTrainNetwork(network, criterion) train_network.set_train() opt = Momentum(train_network.trainable_params(), lr, momentum) train_net = TrainOneStepCell(train_network, opt).set_train() model = Model(train_net) model.train(max_epoch, dataset, dataset_sink_mode=False) context.reset_auto_parallel_context() def test_auto_batch_parallel(): gather_v2_strategy = None criterion = GatherV2(1, strategy=gather_v2_strategy, index_size=batch_size_per_device * device_number) rank = 2 net_trains(criterion, rank) def test_2d_index_auto_batch_parallel(): gather_v2_strategy = None criterion = GatherV2(2, strategy=gather_v2_strategy, index_size=batch_size_per_device * device_number) rank = 2 net_trains(criterion, rank) def test_batch_parallel(): gather_v2_strategy = ((device_number, 1),) criterion = GatherV2(1, strategy=gather_v2_strategy, index_size=batch_size_per_device * device_number) rank = 2 net_trains(criterion, rank) def test_strategy1(): gather_v2_strategy = ((16, 2),) rank = 2 criterion = GatherV2(1, strategy=gather_v2_strategy, index_size=batch_size_per_device * device_number) net_trains(criterion, rank) def test_strategy2(): gather_v2_strategy = ((1, device_number),) rank = 2 criterion = GatherV2(1, strategy=gather_v2_strategy, index_size=batch_size_per_device * device_number) net_trains(criterion, rank) def test_strategy3(): gather_v2_strategy = ((8, 1),) rank = 2 criterion = GatherV2(1, strategy=gather_v2_strategy, index_size=batch_size_per_device * device_number) net_trains(criterion, rank) class GatherV2Axis1(LossBase): def __init__(self, index_dim, strategy, index_size=16): super(GatherV2Axis1, self).__init__() self.pow = P.Pow() emb1_list = 21 emb2_list = 2 if index_dim == 1: emb_list = list(range(index_size)) emb1_list = emb_list[0::2] emb2_list = emb_list[1::2] if index_dim == 2: emb_list = np.arange(index_size * index_size) emb1_list = np.reshape(emb_list[0::2], (int(index_size / 2), index_size)) emb2_list = np.reshape(emb_list[1::2], (int(index_size / 2), index_size)) self.emb1_param = Tensor(emb1_list, dtype=mstype.int32) self.emb2_param = Tensor(emb2_list, dtype=mstype.int32) self.gatherv2 = P.Gather().shard(strategy) def construct(self, nembeddings): emb1 = self.gatherv2(nembeddings, self.emb1_param, 1) emb2 = self.gatherv2(nembeddings, self.emb2_param, 1) return self.pow((emb1 - emb2), 2.0) def test_axis1_auto_batch_parallel(): gather_v2_strategy = None criterion = GatherV2Axis1(1, strategy=gather_v2_strategy, index_size=512) rank = 2 net_trains(criterion, rank) def test_axis1_batch_parallel(): gather_v2_strategy = ((device_number, 1), (1,)) criterion = GatherV2Axis1(1, strategy=gather_v2_strategy, index_size=512) rank = 2 net_trains(criterion, rank) def test_axis1_strategy1(): gather_v2_strategy = ((16, 2), (1,)) rank = 17 criterion = GatherV2Axis1(1, strategy=gather_v2_strategy, index_size=512) net_trains(criterion, rank)