# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.api import _cell_graph_executor from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter, ParameterTuple from mindspore.ops import composite as C from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE) grad_by_list = C.GradOperation(get_by_list=True) class NetWithLoss(nn.Cell): def __init__(self, network, types, shapes, output_num, strategy3=None, strategy4=None, axis=-1): super(NetWithLoss, self).__init__() self.get_next = P.GetNext(types, shapes, output_num, "") self.one_hot = P.OneHot(axis=axis).shard(strategy3) self.on_value = Tensor(1.0, ms.float32) self.off_value = Tensor(0.0, ms.float32) self.loss = P.SoftmaxCrossEntropyWithLogits().shard(strategy4) self.network = network def construct(self): data, label = self.get_next() predict = self.network(data) label = self.one_hot(label, 64, self.on_value, self.off_value) return self.loss(predict, label)[0] class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network self.weights = ParameterTuple(network.trainable_params()) def construct(self): return grad_by_list(self.network, self.weights)() def compile_net(net): net.set_auto_parallel() _cell_graph_executor.compile(net) def test_get_next_single(): class Net(nn.Cell): def __init__(self, channel=1, w=0.25): super().__init__() self.norm = P.L2Normalize(axis=1) self.prelu = P.PReLU() self.w = Parameter(initializer(w, [channel,]), name='w') def construct(self, data): x = self.norm(data) x = self.prelu(x, self.w) return x net = GradWrap(NetWithLoss(Net(), [ms.float32, ms.int32], [[32, 64], [32]], 2)) _cell_graph_executor.compile(net) def test_get_next_semi_auto_parallel(): class Net(nn.Cell): def __init__(self, channel=1, w=0.25, strategy1=None, strategy2=None): super().__init__() self.norm = P.L2Normalize().shard(strategy1) self.prelu = P.PReLU().shard(strategy2) self.w = Parameter(initializer(w, [channel,]), name='w') def construct(self, data): x = self.norm(data) x = self.prelu(x, self.w) return x context.set_auto_parallel_context(device_num=4, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") network = Net(strategy1=((1, 4),), strategy2=((4, 1), (1,))) strategy3 = ((4, 1), (), ()) strategy4 = ((4, 1), (4, 1)) net_with_loss = NetWithLoss(network, [ms.float32, ms.int32], [[32, 64], [32]], 2, strategy3=strategy3, strategy4=strategy4) net = GradWrap(net_with_loss) compile_net(net) def test_get_next_semi_auto_parallel1(): class Net(nn.Cell): def __init__(self, channel=1, w=0.25, strategy1=None, strategy2=None): super().__init__() self.norm = P.L2Normalize().shard(strategy1) self.prelu = P.PReLU().shard(strategy2) self.w = Parameter(initializer(w, [channel,]), name='w') def construct(self, data): x = self.norm(data) x = self.prelu(x, self.w) return x context.set_auto_parallel_context(device_num=4, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") network = Net(strategy1=((1, 4),), strategy2=((4, 1), (1,))) strategy3 = ((1, 4), (), ()) strategy4 = ((4, 1), (4, 1)) net_with_loss = NetWithLoss(network, [ms.float32, ms.int32], [[32, 64], [32]], 2, strategy3=strategy3, strategy4=strategy4) net = GradWrap(net_with_loss) compile_net(net) def test_get_next_auto_parallel(): class Net(nn.Cell): def __init__(self, channel=1, w=0.25, strategy1=None, strategy2=None): super().__init__() self.norm = P.L2Normalize().shard(strategy1) self.prelu = P.PReLU().shard(strategy2) self.w = Parameter(initializer(w, [channel,]), name='w') def construct(self, data): x = self.norm(data) x = self.prelu(x, self.w) return x context.set_auto_parallel_context(device_num=4, global_rank=0) context.set_auto_parallel_context(parallel_mode="auto_parallel") network = Net() net_with_loss = NetWithLoss(network, [ms.float32, ms.int32], [[32, 64], [32]], 2) net = GradWrap(net_with_loss) compile_net(net) def test_only_one_get_next(): class Net(nn.Cell): def __init__(self): super().__init__() self.get_next = P.GetNext([ms.float32, ms.int32], [[32, 64], [32]], 2, "") def construct(self): return self.get_next() context.set_auto_parallel_context(device_num=4, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") net = Net() net.set_train() compile_net(net)