# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore as ms from mindspore import context, Tensor, Parameter from mindspore.common.api import _cell_graph_executor from mindspore.common.initializer import initializer from mindspore.nn import Cell, TrainOneStepCell, Momentum from mindspore.ops import operations as P class Net(Cell): def __init__(self, mul_weight, strategy1=None, strategy2=None, strategy3=None): super().__init__() self.begin_norm_axis = 2 self.begin_params_axis = 1 self.mul = P.Mul().shard(strategy1) self.layer_norm = P.LayerNorm(self.begin_norm_axis, self.begin_params_axis).shard(strategy2) self.mul2 = P.Mul().shard(strategy3) self.mul_weight = Parameter(mul_weight, "w1") self.normalized_shape = [64, 32, 16] self.gamma = Parameter(initializer('ones', self.normalized_shape), name="gamma") self.beta = Parameter(initializer('zeros', self.normalized_shape), name="beta") def construct(self, x, b): out = self.mul(x, self.mul_weight) out, _, _ = self.layer_norm(out, self.gamma, self.beta) out = self.mul2(out, b) return out _x = Tensor(np.ones([16, 64, 32, 16]), dtype=ms.float32) _w = Tensor(np.ones([16, 64, 32, 16]), dtype=ms.float32) _b = Tensor(np.ones([16, 64, 32, 16]), dtype=ms.float32) def compile_net(net): optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, _x, _b) context.reset_auto_parallel_context() def test_layer_norm_data_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((16, 1, 1, 1), (16, 1, 1, 1)) strategy2 = ((16, 1, 1, 1), (1, 1, 1), (1, 1, 1)) strategy3 = ((16, 1, 1, 1), (16, 1, 1, 1)) net = Net(_w, strategy1, strategy2, strategy3) compile_net(net) def test_layer_norm_model_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((1, 16, 1, 1), (1, 16, 1, 1)) strategy2 = ((1, 16, 1, 1), (16, 1, 1), (16, 1, 1)) strategy3 = ((1, 16, 1, 1), (1, 16, 1, 1)) net = Net(_w, strategy1, strategy2, strategy3) compile_net(net) def test_layer_norm_hybrid_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((2, 8, 1, 1), (2, 8, 1, 1)) strategy2 = ((2, 8, 1, 1), (8, 1, 1), (8, 1, 1)) strategy3 = ((2, 8, 1, 1), (2, 8, 1, 1)) net = Net(_w, strategy1, strategy2, strategy3) compile_net(net) def test_layer_norm_auto_parallel(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0) net = Net(_w) compile_net(net) def test_layer_norm_repeat_calc(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((2, 2, 4, 1), (2, 2, 4, 1)) strategy2 = ((2, 2, 1, 1), (2, 1, 1), (2, 1, 1)) strategy3 = ((2, 2, 4, 1), (2, 2, 4, 1)) net = Net(_w, strategy1, strategy2, strategy3) compile_net(net) def test_layer_norm_wrong_strategy(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((2, 2, 4, 1), (2, 2, 4, 1)) strategy2 = ((1, 2, 1, 2), (2, 1, 2), (2, 1, 2)) strategy3 = ((2, 2, 4, 1), (2, 2, 4, 1)) net = Net(_w, strategy1, strategy2, strategy3) with pytest.raises(RuntimeError): compile_net(net)