# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pytest import mindspore as ms from mindspore import context, Tensor, Parameter from mindspore.common.api import _cell_graph_executor from mindspore.nn import Cell, TrainOneStepCell, Momentum from mindspore.ops import operations as P class Net(Cell): def __init__(self, conv2d_weight, out_channel, kernel_size, pad_mode, stride, pool_kernel_size, pool_strides, strategy1=None, strategy2=None): super().__init__() self.conv2d = P.Conv2D(out_channel=out_channel, kernel_size=kernel_size, pad_mode=pad_mode, stride=stride).shard(strategy1) self.conv2d_weight = Parameter(conv2d_weight, "w1") self.max_pool = P.MaxPool(kernel_size=pool_kernel_size, strides=pool_strides).shard(strategy2) def construct(self, x, b): out = self.conv2d(x, self.conv2d_weight) out = self.max_pool(out) return out class Net2(Cell): def __init__(self, conv2d_weight, out_channel, kernel_size, pad_mode, stride, pool_kernel_size, pool_strides, strategy1=None, strategy2=None): super().__init__() self.conv2d = P.Conv2D(out_channel=out_channel, kernel_size=kernel_size, pad_mode=pad_mode, stride=stride).shard(strategy1) self.conv2d_weight = Parameter(conv2d_weight, "w1") self.avg_pool = P.AvgPool(kernel_size=pool_kernel_size, strides=pool_strides).shard(strategy2) def construct(self, x, b): out = self.conv2d(x, self.conv2d_weight) out = self.avg_pool(out) return out _x0 = Tensor(np.ones([32, 16, 10, 10]), dtype=ms.float32) _x = Tensor(np.ones([32, 16, 8, 8]), dtype=ms.float32) _w1 = Tensor(np.ones([8, 16, 2, 2]), dtype=ms.float32) _b = Tensor(np.ones([32, 16, 8, 8]), dtype=ms.float32) def compile_net(net, inputs=_x): optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, inputs, _b) context.reset_auto_parallel_context() def test_maxpool_data_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1)) strategy2 = ((8, 1, 1, 1),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=2, pool_strides=2, strategy1=strategy1, strategy2=strategy2) compile_net(net) def test_maxpool_model_parallel1(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 1, 1), (2, 2, 1, 1)) strategy2 = ((2, 1, 2, 2),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=2, pool_strides=2, strategy1=strategy1, strategy2=strategy2) compile_net(net) def test_maxpool_model_parallel2(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 1, 1), (2, 2, 1, 1)) strategy2 = ((2, 1, 2, 2),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=2, pool_strides=4, strategy1=strategy1, strategy2=strategy2) compile_net(net) def test_maxpool_auto_parallel(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=2, pool_strides=4) compile_net(net) def test_maxpool_output_is_not_divisible_by_strategy_w_dimension(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1)) strategy2 = ((1, 1, 1, 8),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=2, pool_strides=2, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net) def test_maxpool_output_is_not_divisible_by_strategy_h_dimension(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1)) strategy2 = ((1, 1, 8, 1),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=2, pool_strides=2, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net) def test_maxpool_shard_h_and_kernel_size_larger_than_stride(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1)) strategy2 = ((1, 1, 2, 1),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=3, pool_strides=2, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net) def test_maxpool_shard_w_and_kernel_size_larger_than_stride(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1)) strategy2 = ((1, 1, 1, 2),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=3, pool_strides=2, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net) def test_maxpool_shard_h_and_input_slice_is_not_divisible_by_stride(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1)) strategy2 = ((1, 1, 2, 1),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=1, pool_strides=3, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net, inputs=_x0) def test_maxpool_shard_w_and_input_slice_is_not_divisible_by_stride(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1)) strategy2 = ((1, 1, 2, 1),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=1, pool_strides=3, strategy1=strategy1, strategy2=strategy2) with pytest.raises(RuntimeError): compile_net(net, inputs=_x0) def test_avgpool_data_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1)) strategy2 = ((8, 1, 1, 1),) net = Net2(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=2, pool_strides=2, strategy1=strategy1, strategy2=strategy2) compile_net(net) def test_avgpool_model_parallel1(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 1, 1), (2, 2, 1, 1)) strategy2 = ((2, 1, 2, 2),) net = Net2(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=2, pool_strides=2, strategy1=strategy1, strategy2=strategy2) compile_net(net) def test_avgpool_model_parallel2(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 1, 1), (2, 2, 1, 1)) strategy2 = ((2, 1, 2, 2),) net = Net2(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=2, pool_strides=4, strategy1=strategy1, strategy2=strategy2) compile_net(net) def test_avgpool_auto_parallel(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) net = Net2(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, pool_kernel_size=2, pool_strides=4) compile_net(net)