# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore.common.api import _cell_graph_executor from mindspore.ops import operations as P from mindspore.ops import composite as C from mindspore import Tensor, context from mindspore.nn import TrainOneStepCell, Adam from tests.ut.python.ops.test_math_ops import VirtualLoss grad_all = C.GradOperation(get_all=True) @pytest.fixture(name="test_context") def _test_context(): context.set_context(enable_sparse=True) yield context.set_context(enable_sparse=False) context.reset_auto_parallel_context() class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y, z): return grad_all(self.network)(x, y, z) class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y, z): predict = self.network(x, y, z) return self.loss(predict) class Net(nn.Cell): def __init__(self, shape, field_size=10, slice_mode=nn.EmbeddingLookup.BATCH_SLICE, target="Device", operator='SUM'): super().__init__() self.embedding = nn.MultiFieldEmbeddingLookup(vocab_size=32, embedding_size=64, target=target, field_size=field_size, slice_mode=slice_mode, operator=operator) self.reshape = P.Reshape() self.batch_size = shape[0] def construct(self, x, y, z): out = self.embedding(x, y, z) out = self.reshape(out, (self.batch_size, -1)) return out def compile_net(net, shape): x = Tensor(np.ones(shape), dtype=ms.int32) y = Tensor(np.ones(shape), dtype=ms.float32) z = Tensor(np.ones(shape), dtype=ms.int32) optimizer = Adam(net.trainable_params(), learning_rate=0.1) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, x, y, z) context.reset_auto_parallel_context() def test_embeddinglookup_batch_parallel_sum(test_context): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") shape = [64, 64] net = NetWithLoss(Net(shape, field_size=10, target='DEVICE')) compile_net(net, shape) def test_embeddinglookup_row_parallel_sum(test_context): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") shape = [64, 64] net = NetWithLoss(Net(shape, field_size=9, slice_mode=nn.EmbeddingLookup.TABLE_ROW_SLICE, target='DEVICE')) compile_net(net, shape) def test_embeddinglookup_column_parallel_sum(test_context): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") shape = [64, 64] net = NetWithLoss(Net(shape, field_size=10, slice_mode=nn.EmbeddingLookup.TABLE_COLUMN_SLICE, target='DEVICE')) compile_net(net, shape) def test_embeddinglookup_batch_parallel_mean(test_context): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") shape = [64, 64] net = NetWithLoss(Net(shape, field_size=1, target='DEVICE', operator='MEAN')) compile_net(net, shape) def test_embeddinglookup_column_parallel_mean(test_context): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") shape = [64, 64] net = NetWithLoss(Net(shape, target='DEVICE', slice_mode=nn.EmbeddingLookup.TABLE_COLUMN_SLICE, operator='MEAN')) compile_net(net, shape) def test_embeddinglookup_row_parallel_mean(test_context): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") shape = [64, 64] net = NetWithLoss(Net(shape, target='DEVICE', slice_mode=nn.EmbeddingLookup.TABLE_ROW_SLICE, operator='MEAN')) compile_net(net, shape) def test_embeddinglookup_batch_parallel_max(test_context): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") shape = [64, 64] net = NetWithLoss(Net(shape, target='DEVICE', operator='MAX')) compile_net(net, shape) def test_embeddinglookup_column_parallel_max(test_context): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") shape = [64, 64] net = NetWithLoss(Net(shape, target='DEVICE', slice_mode=nn.EmbeddingLookup.TABLE_COLUMN_SLICE, operator='MAX')) compile_net(net, shape) def test_embeddinglookup_row_parallel_max(test_context): context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") shape = [64, 64] net = NetWithLoss(Net(shape, target='DEVICE', slice_mode=nn.EmbeddingLookup.TABLE_ROW_SLICE, operator='MAX')) compile_net(net, shape)