# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import numpy as np import mindspore as ms import mindspore.context as context from mindspore import Tensor, Parameter import mindspore.nn as nn from mindspore.common.api import _cell_graph_executor from mindspore.nn import TrainOneStepCell, Momentum from mindspore.ops import operations as P from mindspore.ops.operations.comm_ops import NeighborExchange _w1 = Tensor(np.ones([32, 32]), dtype=ms.float32) _x1 = Tensor(np.ones([32, 16]), dtype=ms.float32) _x2 = Tensor(np.ones([16, 32]), dtype=ms.float32) def compile_net(net): context.set_context(mode=context.GRAPH_MODE) optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_train() _cell_graph_executor.compile(train_net, _x1, _x2) def test_NeighborExchange_two_inputs_success(): """ Feature: NeighborExchange Description: two inputs and two outputs, with valid arguments Expectation: success """ context.set_auto_parallel_context(device_num=8, global_rank=0) class MatMulNet(nn.Cell): def __init__(self, weight1): super(MatMulNet, self).__init__() self.matmul = P.MatMul() self.mul = P.Mul() self.alltoallv = NeighborExchange(send_rank_ids=[0, 1], recv_rank_ids=[1, 2], recv_shapes=([32, 32], [32, 64]), send_shapes=([32, 32], [32, 16]), recv_type=ms.float32) self.weight1 = Parameter(weight1, "w1") def construct(self, x1, x2): out = self.matmul(x1, x2) out = self.mul(out, self.weight1) out = self.alltoallv((out, x1)) return out[0] net = MatMulNet(_w1) compile_net(net) def test_NeighborExchange_single_input_success(): """ Feature: NeighborExchange Description: one inputs and two outputs, with valid arguments Expectation: success """ context.set_auto_parallel_context(device_num=8, global_rank=0) class MatMulNet2(nn.Cell): def __init__(self, weight1): super(MatMulNet2, self).__init__() self.matmul = P.MatMul() self.mul = P.Mul() self.alltoallv = NeighborExchange(send_rank_ids=[0], recv_rank_ids=[1, 2], recv_shapes=([32, 32], [32, 64]), send_shapes=([32, 32],), recv_type=ms.float32) self.weight1 = Parameter(weight1, "w1") def construct(self, x1, x2): out = self.matmul(x1, x2) out = self.mul(out, self.weight1) out = self.alltoallv((out,)) return out[0] net = MatMulNet2(_w1) compile_net(net) def test_NeighborExchange_empty_send_success(): """ Feature: NeighborExchange Description: empty inputs, with valid arguments Expectation: success """ context.set_auto_parallel_context(device_num=8, global_rank=0) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.alltoallv = NeighborExchange(send_rank_ids=[], recv_rank_ids=[1], recv_shapes=([1],), send_shapes=(), recv_type=ms.float32) def construct(self, x1): self.alltoallv() return x1 net = Net() _cell_graph_executor.compile(net, _x1) def test_NeighborExchange_empty_recv_success(): """ Feature: NeighborExchange Description: empty outputs, with valid arguments Expectation: success """ context.set_auto_parallel_context(device_num=8, global_rank=0) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.alltoallv = NeighborExchange(send_rank_ids=[0], recv_rank_ids=[], recv_shapes=(), send_shapes=([32, 16],), recv_type=ms.float32) def construct(self, x1): self.alltoallv((x1,)) return x1 net = Net() _cell_graph_executor.compile(net, _x1) def test_NeighborExchange_empty_send_empty_recv_success(): """ Feature: NeighborExchange Description: empty inputs and empty outputs, with valid arguments Expectation: success """ context.set_auto_parallel_context(device_num=8, global_rank=0) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.alltoallv = NeighborExchange(send_rank_ids=[], recv_rank_ids=[], recv_shapes=(), send_shapes=(), recv_type=ms.float32) def construct(self, x1): self.alltoallv() return x1 net = Net() _cell_graph_executor.compile(net, _x1) def test_NeighborExchange_recv_shape_num_diff_with_recv_rank_size_failed(): """ Feature: NeighborExchange Description: send_rank_ids and send_shapes are set as 1 input, but gives 2 Expectation: throw ValueError """ context.set_auto_parallel_context(device_num=8, global_rank=0) class Net(nn.Cell): def __init__(self, weight1): super(Net, self).__init__() self.matmul = P.MatMul() self.mul = P.Mul() self.alltoallv = NeighborExchange(send_rank_ids=[0], recv_rank_ids=[1, 2], recv_shapes=([32, 32],), send_shapes=([32, 32],), recv_type=ms.float32) self.weight1 = Parameter(weight1, "w1") def construct(self, x1, x2): out = self.matmul(x1, x2) out = self.mul(out, self.weight1) out = self.alltoallv((out,)) return out[0] net = Net(_w1) with pytest.raises(ValueError): compile_net(net) def test_NeighborExchange_send_shape_num_diff_with_send_rank_size_failed(): """ Feature: NeighborExchange Description: send_rank_ids is set as 2 inputs, but send_shapes are set as 1 input Expectation: throw ValueError """ context.set_auto_parallel_context(device_num=8, global_rank=0) class Net(nn.Cell): def __init__(self, weight1): super(Net, self).__init__() self.matmul = P.MatMul() self.mul = P.Mul() self.alltoallv = NeighborExchange(send_rank_ids=[0, 1], recv_rank_ids=[1, 2], recv_shapes=([32, 32], [32, 32]), send_shapes=([32, 32],), recv_type=ms.float32) self.weight1 = Parameter(weight1, "w1") def construct(self, x1, x2): out = self.matmul(x1, x2) out = self.mul(out, self.weight1) out = self.alltoallv((out,)) return out[0] net = Net(_w1) with pytest.raises(ValueError): compile_net(net) def test_NeighborExchange_send_shape_num_diff_with_input_num_failed(): """ Feature: NeighborExchange Description: send_rank_ids and send_shapes are set as 2 inputs, but has only 1 input Expectation: throw Exception """ context.set_auto_parallel_context(device_num=8, global_rank=0) class Net(nn.Cell): def __init__(self, weight1): super(Net, self).__init__() self.matmul = P.MatMul() self.mul = P.Mul() self.alltoallv = NeighborExchange(send_rank_ids=[0, 1], recv_rank_ids=[1, 2], recv_shapes=([32, 32], [32, 32]), send_shapes=([32, 32], [32, 32]), recv_type=ms.float32) self.weight1 = Parameter(weight1, "w1") def construct(self, x1, x2): out = self.matmul(x1, x2) out = self.mul(out, self.weight1) out = self.alltoallv((out,)) return out[0] net = Net(_w1) with pytest.raises(Exception): compile_net(net) def test_NeighborExchange_send_shape_diff_with_input_shape_failed(): """ Feature: NeighborExchange Description: send_shapes is set as [16, 16], but input is [32, 32] Expectation: throw Exception """ context.set_auto_parallel_context(device_num=8, global_rank=0) class Net(nn.Cell): def __init__(self, weight1): super(Net, self).__init__() self.matmul = P.MatMul() self.mul = P.Mul() self.alltoallv = NeighborExchange(send_rank_ids=[0], recv_rank_ids=[1, 2], recv_shapes=([32, 32], [32, 64]), send_shapes=([16, 16],), recv_type=ms.float32) self.weight1 = Parameter(weight1, "w1") def construct(self, x1, x2): out = self.matmul(x1, x2) out = self.mul(out, self.weight1) out = self.alltoallv((out,)) return out[0] net = Net(_w1) with pytest.raises(Exception): compile_net(net) def test_NeighborExchange_attr_check_send_rank_ids_is_tuple_failed(): """ Feature: NeighborExchange Description: send_rank_ids should be list, but a tuple is given Expectation: throw TypeError """ context.set_auto_parallel_context(device_num=8, global_rank=0) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.alltoallv = NeighborExchange(send_rank_ids=(0), recv_rank_ids=[1, 2], recv_shapes=([32, 32], [32, 64]), send_shapes=([32, 16],), recv_type=ms.float32) def construct(self, x1): out = self.alltoallv((x1,)) return out[0] net = Net() with pytest.raises(TypeError): _cell_graph_executor.compile(net, _x1) def test_NeighborExchange_attr_check_send_rank_ids_is_tuple_2_failed(): """ Feature: NeighborExchange Description: send_rank_ids should be list, but a tuple is given Expectation: throw TypeError """ context.set_auto_parallel_context(device_num=8, global_rank=0) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.alltoallv = NeighborExchange(send_rank_ids=(0,), recv_rank_ids=[1, 2], recv_shapes=([32, 32], [32, 64]), send_shapes=([32, 16],), recv_type=ms.float32) def construct(self, x1): out = self.alltoallv((x1,)) return out[0] net = Net() with pytest.raises(TypeError): _cell_graph_executor.compile(net, _x1) def test_NeighborExchange_attr_check_send_rank_ids_is_float_failed(): """ Feature: NeighborExchange Description: send_rank_ids should be int, but a float is given Expectation: throw TypeError """ context.set_auto_parallel_context(device_num=8, global_rank=0) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.alltoallv = NeighborExchange(send_rank_ids=[1.0], recv_rank_ids=[1, 2], recv_shapes=([32, 32], [32, 64]), send_shapes=([32, 16],), recv_type=ms.float32) def construct(self, x1): out = self.alltoallv((x1,)) return out[0] net = Net() with pytest.raises(TypeError): _cell_graph_executor.compile(net, _x1) def test_NeighborExchange_attr_check_recv_rank_ids_is_tuple_failed(): """ Feature: NeighborExchange Description: recv_rank_ids should be list, but a tuple is given Expectation: throw TypeError """ context.set_auto_parallel_context(device_num=8, global_rank=0) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.alltoallv = NeighborExchange(send_rank_ids=[0], recv_rank_ids=([1, 2],), recv_shapes=([32, 32], [32, 64]), send_shapes=([32, 16],), recv_type=ms.float32) def construct(self, x1): out = self.alltoallv((x1,)) return out[0] net = Net() with pytest.raises(TypeError): _cell_graph_executor.compile(net, _x1) def test_NeighborExchange_attr_check_recv_rank_ids_is_tuple_2_failed(): """ Feature: NeighborExchange Description: recv_rank_ids should be list, but a tuple is given Expectation: throw TypeError """ context.set_auto_parallel_context(device_num=8, global_rank=0) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.alltoallv = NeighborExchange(send_rank_ids=[0], recv_rank_ids=(1, 2,), recv_shapes=([32, 32], [32, 64]), send_shapes=([32, 16],), recv_type=ms.float32) def construct(self, x1): out = self.alltoallv((x1,)) return out[0] net = Net() with pytest.raises(TypeError): _cell_graph_executor.compile(net, _x1) def test_NeighborExchange_attr_check_recv_rank_ids_is_float_failed(): """ Feature: NeighborExchange Description: recv_rank_ids should be int, but a float is given Expectation: throw TypeError """ context.set_auto_parallel_context(device_num=8, global_rank=0) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.alltoallv = NeighborExchange(send_rank_ids=[1], recv_rank_ids=[1, 2.0], recv_shapes=([32, 32], [32, 64]), send_shapes=([32, 16],), recv_type=ms.float32) def construct(self, x1): out = self.alltoallv((x1,)) return out[0] net = Net() with pytest.raises(TypeError): _cell_graph_executor.compile(net, _x1) def test_NeighborExchange_attr_check_send_shape_not_tuple_failed(): """ Feature: NeighborExchange Description: send_shapes should be tuple(list), but a list is given Expectation: throw TypeError """ context.set_auto_parallel_context(device_num=8, global_rank=0) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.alltoallv = NeighborExchange(send_rank_ids=[1], recv_rank_ids=[1, 2], recv_shapes=([32, 32], [32, 64]), send_shapes=([32, 16]), recv_type=ms.float32) def construct(self, x1): out = self.alltoallv((x1,)) return out[0] net = Net() with pytest.raises(TypeError): _cell_graph_executor.compile(net, _x1) def test_NeighborExchange_attr_check_send_shape_list_failed(): """ Feature: NeighborExchange Description: send_shapes should be tuple(list), but a list(list) is given Expectation: throw TypeError """ context.set_auto_parallel_context(device_num=8, global_rank=0) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.alltoallv = NeighborExchange(send_rank_ids=[1], recv_rank_ids=[1, 2], recv_shapes=([32, 32], [32, 64]), send_shapes=[[32, 16]], recv_type=ms.float32) def construct(self, x1): out = self.alltoallv((x1,)) return out[0] net = Net() with pytest.raises(TypeError): _cell_graph_executor.compile(net, _x1) def test_NeighborExchange_attr_check_recv_type_numpy_failed(): """ Feature: NeighborExchange Description: recv_type should be mindspore type, but a numpy type is given Expectation: throw TypeError """ context.set_auto_parallel_context(device_num=8, global_rank=0) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.alltoallv = NeighborExchange(send_rank_ids=[1], recv_rank_ids=[1, 2], recv_shapes=([32, 32], [32, 64]), send_shapes=([32, 16],), recv_type=np.float32) def construct(self, x1): out = self.alltoallv((x1,)) return out[0] net = Net() with pytest.raises(TypeError): _cell_graph_executor.compile(net, _x1) def test_NeighborExchange_attr_invalid_grpup_failed(): """ Feature: NeighborExchange Description: group should be str, but a tuple is given Expectation: throw TypeError """ context.set_auto_parallel_context(device_num=8, global_rank=0) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.alltoallv = NeighborExchange(send_rank_ids=[1], recv_rank_ids=[1, 2], recv_shapes=([32, 32], [32, 64]), send_shapes=([32, 16],), recv_type=ms.float32, group=("str",)) def construct(self, x1): out = self.alltoallv((x1,)) return out[0] net = Net() with pytest.raises(TypeError): _cell_graph_executor.compile(net, _x1)