# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore as ms import mindspore.context as context from mindspore import Tensor, Parameter import mindspore.nn as nn from mindspore.common.api import _cell_graph_executor from mindspore.nn import TrainOneStepCell, Momentum from mindspore.ops import operations as P from mindspore.nn import Dense, Flatten class Net(nn.Cell): def __init__(self, weight1, weight2, axis=0, strategy1=None, strategy2=None, is_parameter=True): super(Net, self).__init__() self.pack = P.Stack(axis=axis).shard(strategy1) self.mul = P.Mul().shard(strategy2) if is_parameter: self.weight1 = Parameter(weight1, "w1") else: self.weight1 = weight1 self.weight2 = Parameter(weight2, "w2") def construct(self, x): out = self.pack([self.weight1, self.weight2]) out = self.mul(x, out) return out class Net1(nn.Cell): def __init__(self, weight1, weight2, axis=0, strategy1=None, strategy2=None): super(Net1, self).__init__() self.pack = P.Stack(axis=axis).shard(strategy1) self.mul = P.Mul().shard(strategy2) self.weight1 = Parameter(weight1, "w1") self.weight2 = Parameter(weight2, "w2") def construct(self, x): out = self.mul(x, self.weight1) out = self.pack([out, self.weight2]) return out class Net2(nn.Cell): def __init__(self, weight1, weight2, weight3, axis=0, strategy1=None, strategy2=None, is_parameter=True): super(Net2, self).__init__() self.pack = P.Stack(axis=axis).shard(strategy1) self.mul = P.Mul().shard(strategy2) if is_parameter: self.weight1 = Parameter(weight1, "w1") else: self.weight1 = weight1 self.weight2 = Parameter(weight2, "w2") self.weight3 = Parameter(weight2, "w3") def construct(self, x): out = self.pack([self.weight1, self.weight2, self.weight3]) out = self.mul(x, out) return out class PackConstantNet1(nn.Cell): def __init__(self, dense_in_channel, dense_out_channel, axis=0, shape=None, strategy=None): super().__init__() weight_np = np.full((dense_out_channel, dense_in_channel), 0.01, dtype=np.float32) bias_np = np.full((dense_out_channel), 0.01, dtype=np.float32) self.pack_con = Tensor(np.full(shape, 0.01, dtype=np.float32)) self.flat = Flatten() self.dense = Dense(in_channels=dense_in_channel, out_channels=dense_out_channel, weight_init=Tensor(weight_np), bias_init=Tensor(bias_np), has_bias=True) self.mul = P.Mul() self.pack = P.Stack(axis) if strategy is not None: self.pack.shard(strategy) def construct(self, inputs): x = self.pack([self.pack_con, self.pack_con, self.pack_con, self.pack_con, self.pack_con, self.pack_con, self.pack_con, self.pack_con]) x1 = self.flat(x) x2 = self.flat(inputs) x = self.mul(x1, x2) x = self.dense(x) return x class PackConstantNet2(nn.Cell): def __init__(self, dense_in_channel, dense_out_channel, axis=0, shape=None, strategy=None): super().__init__() weight_np = np.full((dense_out_channel, dense_in_channel), 0.01, dtype=np.float32) bias_np = np.full((dense_out_channel), 0.01, dtype=np.float32) self.pack_con = Tensor(np.full(shape, 0.01, dtype=np.float32)) self.flat = Flatten() self.dense = Dense(in_channels=dense_in_channel, out_channels=dense_out_channel, weight_init=Tensor(weight_np), bias_init=Tensor(bias_np), has_bias=True) self.mul = P.Mul() self.pack = P.Stack(axis) if strategy is not None: self.pack.shard(strategy) def construct(self, inputs): x = self.pack((self.pack_con, self.pack_con, self.pack_con, self.pack_con, self.pack_con, self.pack_con, self.pack_con, self.pack_con)) x1 = self.flat(x) x2 = self.flat(inputs) x = self.mul(x1, x2) x = self.dense(x) return x _w1 = Tensor(np.ones([48, 64]), dtype=ms.float32) _w2 = Tensor(np.ones([48, 64]), dtype=ms.float32) _w3 = Tensor(np.ones([48, 64]), dtype=ms.float32) _x = Tensor(np.ones([2, 48, 64]), dtype=ms.float32) _x1 = Tensor(np.ones([48, 64]), dtype=ms.float32) _x2 = Tensor(np.ones([3, 48, 64]), dtype=ms.float32) _x_c = Tensor(np.ones([8, 8, 8]), dtype=ms.float32) def compile_net(net): context.set_context(mode=context.GRAPH_MODE) optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, _x) context.reset_auto_parallel_context() def compile_net1(net): context.set_context(mode=context.GRAPH_MODE) optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, _x1) context.reset_auto_parallel_context() def compile_net2(net): context.set_context(mode=context.GRAPH_MODE) optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, _x2) context.reset_auto_parallel_context() def compile_net_con(net): context.set_context(mode=context.GRAPH_MODE) optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() _cell_graph_executor.compile(train_net, _x_c) context.reset_auto_parallel_context() def test_pack_parameter(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((4, 2), (4, 2)) strategy2 = ((1, 4, 2), (1, 4, 2)) net = Net(_w1, _w2, 0, strategy1, strategy2) compile_net(net) def test_pack_parameter_no_full_split(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((1, 4, 2), (1, 4, 2)) net = Net(_w1, _w2, 0, strategy1, strategy2) compile_net(net) def test_pack_tensor_and_parameter(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((4, 2), (4, 2)) strategy2 = ((1, 4, 2), (1, 4, 2)) net = Net(_w1, _w2, 0, strategy1, strategy2, False) compile_net(net) def test_pack_output(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((4, 2), (4, 2)) strategy2 = ((4, 2), (4, 2)) net = Net1(_w1, _w2, 0, strategy1, strategy2) compile_net1(net) def test_pack_output_axis1(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((4, 2), (4, 2)) strategy2 = ((4, 2), (4, 2)) net = Net1(_w1, _w2, 1, strategy1, strategy2) compile_net1(net) def test_pack_output_no_full_split(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), (4, 2)) net = Net1(_w1, _w2, 0, strategy1, strategy2) compile_net1(net) def test_pack_no_strategy(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = None strategy2 = ((4, 2), (4, 2)) net = Net1(_w1, _w2, 0, strategy1, strategy2) compile_net1(net) def test_pack_no_strategy_axis1(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = None strategy2 = ((4, 2), (4, 2)) net = Net1(_w1, _w2, 1, strategy1, strategy2) compile_net1(net) def test_pack_auto_parallel(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) net = Net1(_w1, _w2, 0) compile_net1(net) def test_pack_auto_parallel_axis1(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) net = Net1(_w1, _w2, 1) compile_net1(net) def test_pack_auto_parallel_3_tensor(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) net = Net2(_w1, _w2, _w3) compile_net2(net) def test_pack_constant1(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) net = PackConstantNet1(dense_in_channel=64, dense_out_channel=4, axis=0, shape=(8, 8), strategy=((4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1))) compile_net_con(net) def test_pack_constant2(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) net = PackConstantNet2(dense_in_channel=64, dense_out_channel=4, axis=0, shape=(8, 8), strategy=((4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1))) compile_net_con(net) def test_pack_auto_constant(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) net = PackConstantNet1(dense_in_channel=64, dense_out_channel=4, axis=0, shape=(8, 8), strategy=((8, 1), (8, 1), (8, 1), (8, 1), (8, 1), (8, 1), (8, 1), (8, 1))) compile_net_con(net)