# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.nn.optim.momentum import Momentum from mindspore.ops import functional as F from mindspore.ops import operations as P from mindspore.train import Model from mindspore.context import ParallelMode from tests.dataset_mock import MindData context.set_context(mode=context.GRAPH_MODE) class Dataset(MindData): def __init__(self, predict, label, length=3, input_num=2): super(Dataset, self).__init__(size=length) self.predict = predict self.label = label self.index = 0 self.length = length self.input_num = input_num def __iter__(self): return self def __next__(self): if self.index >= self.length: raise StopIteration self.index += 1 if self.input_num == 2: return (self.predict, self.label) return (self.predict,) def reset(self): self.index = 0 class PReLU(nn.Cell): def __init__(self, channel=1, w=0.25): super(PReLU, self).__init__() if isinstance(w, (np.float32, float)): tmp = np.empty((channel,), dtype=np.float32) tmp.fill(w) w = Tensor(tmp) elif isinstance(w, list): w = Tensor(w) if not isinstance(w, Tensor): raise TypeError("w only support np.float32, float or Tensor type.") self.w = Parameter(initializer(w, [channel,]), name='a') self.prelu = P.PReLU() self.relu = P.ReLU().shard(((1,),)) self.sub = P.Sub().shard(((1,), (1,))) self.assign_sub = P.AssignSub().shard(((1,), (1,))) def construct(self, x): u = self.relu(self.w) tmp = self.sub(self.w, u) x = F.depend(x, self.assign_sub(self.w, tmp)) v = self.prelu(x, u) return v class PReLUNet(nn.Cell): def __init__(self): super(PReLUNet, self).__init__() self.prelu = PReLU(channel=256) def construct(self, x): x = self.prelu(x) return x def prelu_net(): return PReLUNet() def reshape_common(parallel_mode): learning_rate = 0.1 momentum = 0.9 epoch_size = 2 context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=8) predict = Tensor(np.ones([32, 256]), dtype=ms.float32) label = Tensor(np.ones([32]), dtype=ms.int32) dataset = Dataset(predict, label, 2) net = prelu_net() loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') opt = Momentum(net.trainable_params(), learning_rate, momentum) model = Model(net, loss, opt) model.train(epoch_size, dataset, dataset_sink_mode=False) def test_prelu_cell(): reshape_common(ParallelMode.SEMI_AUTO_PARALLEL)