# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms from mindspore import context, Tensor, Parameter from mindspore.common.api import _cell_graph_executor from mindspore.nn import Cell, TrainOneStepCell, Momentum, BatchNorm2d, BatchNorm1d from mindspore.ops import operations as P from tests.security_utils import security_off_wrap class Net(Cell): def __init__(self, conv2d_weight, out_channel, kernel_size, pad_mode, stride, strategy1=None, strategy2=None): super().__init__() self.conv2d = P.Conv2D(out_channel=out_channel, kernel_size=kernel_size, pad_mode=pad_mode, stride=stride).shard(strategy1) self.conv2d_weight = Parameter(conv2d_weight, "w1") self.bn = BatchNorm2d(8) self.bn.bn_train.shard(strategy2) self.print = P.Print() def construct(self, x, b): out = self.conv2d(x, self.conv2d_weight) self.print("output is", out) out = self.bn(out) return out _x = Tensor(np.ones([32, 16, 8, 8]), dtype=ms.float32) _w1 = Tensor(np.ones([8, 16, 2, 2]), dtype=ms.float32) _b = Tensor(np.ones([32, 16, 8, 8]), dtype=ms.float32) def compile_net(net): optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, _x, _b) context.reset_auto_parallel_context() @security_off_wrap def test_batchnorm_data_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1)) strategy2 = ((8, 1, 1, 1), (1,), (1,), (1,), (1,)) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) compile_net(net) @security_off_wrap def test_batchnorm_model_parallel1(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 1, 1), (2, 2, 1, 1)) strategy2 = ((2, 1, 2, 2), (1,), (1,), (1,), (1,)) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) compile_net(net) @security_off_wrap def test_batchnorm_model_parallel2(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=32, global_rank=0) strategy1 = ((2, 2, 2, 2), (2, 2, 1, 1)) strategy2 = ((1, 8, 1, 1), (8,), (8,), (8,), (8,)) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=2, strategy1=strategy1, strategy2=strategy2) compile_net(net) class Net2(Cell): def __init__(self, strategy1=None, strategy2=None): super().__init__() self.bn = BatchNorm1d(8) self.bn.bn_train.shard(strategy1) self.relu = P.ReLU().shard(strategy2) def construct(self, x, b): out = self.bn(x) out = self.relu(out) return out _x1 = Tensor(np.ones([32, 8]), dtype=ms.float32) _b1 = Tensor(np.ones([32, 8]), dtype=ms.float32) def compile_net2(net): optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, _x1, _b1) context.reset_auto_parallel_context() def test_batchnorm1d_data_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((8, 1), (1,), (1,), (1,), (1,)) strategy2 = ((8, 1),) net = Net2(strategy1=strategy1, strategy2=strategy2) compile_net2(net) def test_batchnorm1d_model_parallel1(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 8), (8,), (8,), (8,), (8,)) strategy2 = ((1, 8),) net = Net2(strategy1=strategy1, strategy2=strategy2) compile_net2(net) def test_batchnorm1d_model_parallel2(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=32, global_rank=0) strategy1 = ((2, 4), (4,), (4,), (4,), (4,)) strategy2 = ((2, 4),) net = Net2(strategy1=strategy1, strategy2=strategy2) compile_net2(net)