# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. '''ResizeBilinear and ResizeNearestNeigbor ut''' import numpy as np import mindspore as ms from mindspore import context, Tensor, Parameter from mindspore.common.api import _cell_graph_executor from mindspore.nn import Cell, TrainOneStepCell, Momentum from mindspore.ops import operations as P class Net(Cell): ''' create the test Net ''' def __init__(self, conv2d_weight, out_channel, kernel_size, pad_mode, stride, strategy1=None, strategy2=None): super(Net, self).__init__() self.conv2d = P.Conv2D(out_channel=out_channel, kernel_size=kernel_size, pad_mode=pad_mode, stride=stride).shard(strategy1) self.conv2d_weight = Parameter(conv2d_weight, "w1") self.resize_bilinear = P.ResizeBilinear((16, 16)).shard(strategy2) def construct(self, x): out = self.conv2d(x, self.conv2d_weight) out = self.resize_bilinear(out) return out class Net2(Cell): ''' create the test Net ''' def __init__(self, conv2d_weight, out_channel, kernel_size, pad_mode, stride, strategy1=None, strategy2=None): super(Net2, self).__init__() self.conv2d = P.Conv2D(out_channel=out_channel, kernel_size=kernel_size, pad_mode=pad_mode, stride=stride).shard(strategy1) self.conv2d_weight = Parameter(conv2d_weight, "w1") self.resize_neighbor = P.ResizeNearestNeighbor((16, 16)).shard(strategy2) def construct(self, x): out = self.conv2d(x, self.conv2d_weight) out = self.resize_neighbor(out) return out class Net3(Cell): ''' create the test Net ''' def __init__(self, conv2d_weight, out_channel, kernel_size, pad_mode, stride, strategy1=None): super(Net3, self).__init__() self.conv2d = P.Conv2D(out_channel=out_channel, kernel_size=kernel_size, pad_mode=pad_mode, stride=stride).shard(strategy1) self.conv2d_weight = Parameter(conv2d_weight, "w1") self.resize_bilinear = P.ResizeBilinear((16, 16)) def construct(self, x): out = self.conv2d(x, self.conv2d_weight) out = self.resize_bilinear(out) return out _x = Tensor(np.ones([32, 16, 8, 8]), dtype=ms.float32) _w1 = Tensor(np.ones([8, 16, 2, 2]), dtype=ms.float32) def compile_net(net, inputs=_x): optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, inputs) context.reset_auto_parallel_context() def test_bililear_data_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1)) strategy2 = ((8, 1, 1, 1),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) compile_net(net) def test_bilinear_model_parallel1(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 1, 1), (2, 2, 1, 1)) strategy2 = ((4, 2, 1, 1),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) compile_net(net) def test_bilinear_model_parallel2(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 1, 1), (2, 2, 1, 1)) strategy2 = ((2, 1, 1, 1),) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) compile_net(net) def test_bilinear_auto_parallel(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) net = Net(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1) compile_net(net) def test_bilinear_no_strategy(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) net = Net3(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1) compile_net(net) def test_neighbor_data_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1)) strategy2 = ((8, 1, 1, 1),) net = Net2(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) compile_net(net) def test_neighbor_model_parallel1(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((2, 2, 1, 1), (2, 2, 1, 1)) strategy2 = ((4, 2, 1, 1),) net = Net2(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1, strategy1=strategy1, strategy2=strategy2) compile_net(net) def test_neighbor_auto_parallel(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) net = Net2(_w1, out_channel=8, kernel_size=2, pad_mode="same", stride=1) compile_net(net)