# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore as ms import mindspore.context as context from mindspore import Tensor, Parameter import mindspore.nn as nn from mindspore.common.api import _cell_graph_executor from mindspore.nn import TrainOneStepCell, Momentum from mindspore.ops import operations as P class Net(nn.Cell): def __init__(self, mul_weight, axis=0, out_nums=1, strategy1=None, strategy2=None, strategy3=None): super(Net, self).__init__() self.split = P.Split(axis, out_nums).shard(strategy1) self.mul = P.Mul().shard(strategy2) self.matmul = P.MatMul(transpose_b=True).shard(strategy2) self.matmul2 = P.MatMul().shard(strategy3) self.weight = Parameter(mul_weight, "w1") def construct(self, x): out = self.mul(x, self.weight) out1, out2, out3 = self.split(out) out = self.matmul(out1, out2) out = self.matmul2(out, out3) return out class Net1(nn.Cell): def __init__(self, mul_weight, axis=0, out_nums=1, strategy1=None, strategy2=None): super(Net1, self).__init__() self.split = P.Split(axis, out_nums).shard(strategy1) self.mul = P.Mul().shard(strategy2) self.weight = Parameter(mul_weight, "w1") def construct(self, x): out1, out2 = self.split(self.weight) out = self.mul(x, out1) out = self.mul(out, out2) return out class Net2(nn.Cell): def __init__(self, mul_weight, axis=0, out_nums=1, strategy1=None, strategy2=None): super(Net2, self).__init__() self.split = P.Split(axis, out_nums).shard(strategy1) self.mul = P.Mul().shard(strategy2) self.weight = Parameter(mul_weight, "w1") def construct(self, x): out = self.mul(x, self.weight) out1, _ = self.split(out) return out1 _w = Tensor(np.ones([48, 64]), dtype=ms.float32) _x = Tensor(np.ones([48, 64]), dtype=ms.float32) _w1 = Tensor(np.ones([96, 64, 32]), dtype=ms.float32) _x1 = Tensor(np.ones([48, 64, 32]), dtype=ms.float32) _w2 = Tensor(np.ones([48, 64, 32]), dtype=ms.float32) def compile_net(net): context.set_context(mode=context.GRAPH_MODE) optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, _x) context.reset_auto_parallel_context() def compile_net1(net): context.set_context(mode=context.GRAPH_MODE) optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, _x1) context.reset_auto_parallel_context() def test_split_parameter(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 4, 2),) strategy2 = ((1, 4, 2), (1, 4, 2)) net = Net1(_w1, 0, 2, strategy1, strategy2) compile_net1(net) def test_split_parameter_no_full_split(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 2, 2),) strategy2 = ((1, 4, 2), (1, 4, 2)) net = Net1(_w1, 0, 2, strategy1, strategy2) compile_net1(net) def test_split_tensor(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 8),) strategy2 = ((1, 8), (1, 8)) strategy3 = ((1, 1), (1, 8)) net = Net(_w, 0, 3, strategy1, strategy2, strategy3) compile_net(net) def test_split_output(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 4, 2),) strategy2 = ((1, 4, 2), (1, 4, 2)) net = Net2(_w2, 0, 2, strategy1, strategy2) compile_net1(net) def test_split_output_no_full_split(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 2, 2),) strategy2 = ((1, 4, 2), (1, 4, 2)) net = Net2(_w2, 0, 2, strategy1, strategy2) compile_net1(net) def test_split_no_strategy(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = None strategy2 = ((1, 4, 2), (1, 4, 2)) net = Net2(_w2, 0, 2, strategy1, strategy2) compile_net1(net) def test_split_auto_parallel(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) net = Net2(_w2, 0, 2) compile_net1(net)