# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms from mindspore import context, Tensor from mindspore.common.api import _cell_graph_executor from mindspore.nn import Cell from mindspore.ops import operations as P class Net(Cell): def __init__(self, strategy1=None, strategy2=None, axis=()): super().__init__() self.squeeze = P.Squeeze(axis=axis).shard(strategy1) self.mul = P.Mul().shard(strategy2) def construct(self, x, b): out = self.squeeze(x) out = self.mul(out, b) return out _x = Tensor(np.ones([64, 1, 32, 1]), dtype=ms.float32) _b = Tensor(np.ones([64, 32]), dtype=ms.float32) def compile_net(net): net.set_auto_parallel() net.set_train() _cell_graph_executor.compile(net, _x, _b) context.reset_auto_parallel_context() def test_squeeze_data_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((16, 1, 1, 1),) strategy2 = ((16, 1), (16, 1)) net = Net(strategy1, strategy2) compile_net(net) def test_squeeze_model_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((1, 1, 16, 1),) strategy2 = ((1, 16), (1, 16)) net = Net(strategy1, strategy2) compile_net(net) def test_squeeze_specified_axis(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((4, 1, 4, 1),) strategy2 = ((8, 2), (8, 2)) net = Net(strategy1, strategy2, (1, 3)) compile_net(net) def test_squeeze_auto_parallel(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0) net = Net() compile_net(net) def test_squeeze_repeat_calc(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((1, 1, 8, 1),) strategy2 = ((2, 8), (2, 8)) net = Net(strategy1, strategy2) compile_net(net)