# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import re import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.api import _cell_graph_executor from mindspore.ops import operations as P from mindspore.common.parameter import Parameter context.set_context(mode=context.GRAPH_MODE) class DenseMutMulNet(nn.Cell): def __init__(self): super(DenseMutMulNet, self).__init__() self.fc1 = nn.Dense(128, 768) self.fc2 = nn.Dense(128, 768) self.fc3 = nn.Dense(128, 768) self.fc4 = nn.Dense(768, 768, has_bias=False) self.relu4 = nn.ReLU() self.relu5 = nn.ReLU() self.transpose = P.Transpose() self.matmul1 = P.MatMul() self.matmul2 = P.MatMul() self.fc4.matmul.shard(((1, 1), (8, 1))) def construct(self, x): q = self.fc1(x) k = self.fc2(x) v = self.fc3(x) k = self.transpose(k, (1, 0)) c = self.relu4(self.matmul1(q, k)) s = self.relu5(self.matmul2(c, v)) s = self.fc4(s) return s class MulNegTwoOutputNet(nn.Cell): def __init__(self): super().__init__() self.mul = P.Mul().shard(((2, 4), (2, 4))) self.neg = P.Neg().shard(((2, 4),)) self.mul_weight = Parameter(Tensor(np.ones([32, 128]), dtype=ms.float32), name="weight") def construct(self, x): out1 = self.mul(x, self.mul_weight) out2 = self.neg(out1) return out1, out2 class ReshapeMatMulNet(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.reshape = P.Reshape() self.matmul = P.MatMul().shard(strategy2) self.matmul_weight = Parameter(Tensor(np.ones([28, 64]), dtype=ms.float32), name="weight") # x (64, 4, 7) def construct(self, x): out = self.reshape(x, (64, 28)) out = self.matmul(out, self.matmul_weight) return out class MatMulReshapeNet(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.reshape = P.Reshape() self.matmul = P.MatMul().shard(strategy1) self.matmul_weight = Parameter(Tensor(np.ones([28, 64]), dtype=ms.float32), name="weight") # x (128, 28) def construct(self, x): out = self.matmul(x, self.matmul_weight) out = self.reshape(out, (64, -1)) return out class ReshapeMulNet(nn.Cell): def __init__(self): super().__init__() self.reshape = P.Reshape() self.mul = P.Mul().shard(((1, 2, 4), (2, 4))) self.mul_weight = Parameter(Tensor(np.ones([128, 96]), dtype=ms.float32), name="weight") def construct(self, x): weight = self.reshape(self.mul_weight, (1, 128, 96)) out = self.mul(weight, self.mul_weight) return out class ParallelMulNet(nn.Cell): def __init__(self, dense_in_channel=2048, dense_out_channel=250): super().__init__() weight_np = np.full((dense_out_channel, dense_in_channel), 0.01, dtype=np.float32) bias_np = np.full((dense_out_channel,), 0.01, dtype=np.float32) self.flat = nn.Flatten() self.dense = nn.Dense(in_channels=dense_in_channel, out_channels=dense_out_channel, weight_init=Tensor(weight_np), bias_init=Tensor(bias_np), has_bias=True) self.mul = P.Mul() def construct(self, inputs): x = self.flat(inputs) x = self.dense(x) x = self.mul(x, x) return x def compile_graph(x, net): net.set_auto_parallel() net.set_train(False) _cell_graph_executor.compile(net, x, auto_parallel_mode=True) strategies = _cell_graph_executor._get_shard_strategy(net) return strategies def compile_graph_two_input(x, y, net): net.set_auto_parallel() net.set_train(False) _cell_graph_executor.compile(net, x, y, auto_parallel_mode=True) strategies = _cell_graph_executor._get_shard_strategy(net) return strategies def test_dense_relu_semi_auto(): context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel", dataset_strategy="data_parallel") net = DenseMutMulNet() x = Tensor(np.ones([32, 128]).astype(np.float32) * 0.01) strategies = compile_graph(x, net) for (k, v) in strategies.items(): if re.search('VirtualOutput-op', k) is not None: assert v[0][0] == 8 def test_dense_relu_semi_auto_full_batch(): context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel", dataset_strategy="full_batch") net = DenseMutMulNet() x = Tensor(np.ones([32, 128]).astype(np.float32) * 0.01) strategies = compile_graph(x, net) for (k, v) in strategies.items(): if re.search('VirtualOutput-op', k) is not None: assert v[0][0] == 1 def test_dense_relu_auto(): context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel", dataset_strategy="data_parallel") net = DenseMutMulNet() x = Tensor(np.ones([32, 128]).astype(np.float32) * 0.01) strategies = compile_graph(x, net) for (k, v) in strategies.items(): if re.search('VirtualOutput-op', k) is not None: assert v[0][0] == 8 def test_dense_relu_auto_full_batch(): context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel", dataset_strategy="full_batch") net = DenseMutMulNet() x = Tensor(np.ones([32, 128]).astype(np.float32) * 0.01) strategies = compile_graph(x, net) for (k, v) in strategies.items(): if re.search('VirtualOutput-op', k) is not None: assert v[0][0] == 1 def test_mul_neg_two_output_semi_auto(): context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel", dataset_strategy="data_parallel") net = MulNegTwoOutputNet() x = Tensor(np.ones([32, 128]).astype(np.float32) * 0.01) strategies = compile_graph(x, net) count = 0 for (k, v) in strategies.items(): if re.search('VirtualOutput-op', k) is not None: count += 1 assert v[0][0] == 8 assert count == 2 def test_mul_neg_two_output_semi_auto_full_batch(): context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel", dataset_strategy="full_batch") net = MulNegTwoOutputNet() x = Tensor(np.ones([32, 128]).astype(np.float32) * 0.01) strategies = compile_graph(x, net) count = 0 for (k, v) in strategies.items(): if re.search('VirtualOutput-op', k) is not None: count += 1 assert v[0][0] == 1 assert count == 2 def test_mul_neg_two_output_auto(): context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel", dataset_strategy="data_parallel") net = MulNegTwoOutputNet() x = Tensor(np.ones([32, 128]).astype(np.float32) * 0.01) strategies = compile_graph(x, net) count = 0 for (k, v) in strategies.items(): if re.search('VirtualOutput-op', k) is not None: count += 1 assert v[0][0] == 8 assert count == 2 def test_mul_neg_two_output_full_batch(): context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel", dataset_strategy="full_batch") net = MulNegTwoOutputNet() x = Tensor(np.ones([32, 128]).astype(np.float32) * 0.01) strategies = compile_graph(x, net) count = 0 for (k, v) in strategies.items(): if re.search('VirtualOutput-op', k) is not None: count += 1 assert v[0][0] == 1 assert count == 2 def test_reshape_matmul_semi_auto(): context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel", dataset_strategy="data_parallel") strategy1 = None strategy2 = ((1, 1), (1, 8)) net = ReshapeMatMulNet(strategy1, strategy2) x = Tensor(np.ones([64, 4, 7]), ms.float32) strategies = compile_graph(x, net) for (k, v) in strategies.items(): if re.search('VirtualOutput-op', k) is not None: assert v[0][0] == 8 def test_reshape_matmul_auto(): context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel", dataset_strategy="data_parallel") strategy1 = None strategy2 = ((1, 1), (1, 8)) net = ReshapeMatMulNet(strategy1, strategy2) x = Tensor(np.ones([64, 4, 7]), ms.float32) strategies = compile_graph(x, net) for (k, v) in strategies.items(): if re.search('VirtualOutput-op', k) is not None: assert v[0][0] == 8 def test_matmul_reshape_semi_auto(): context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel", dataset_strategy="data_parallel") strategy2 = None strategy1 = ((1, 1), (1, 8)) net = MatMulReshapeNet(strategy1, strategy2) x = Tensor(np.ones([128, 28]), ms.float32) strategies = compile_graph(x, net) for (k, v) in strategies.items(): if re.search('VirtualOutput-op', k) is not None: assert v[0][0] == 8 def test_matmul_reshape_auto(): context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel", dataset_strategy="data_parallel") strategy2 = None strategy1 = ((1, 1), (1, 8)) net = MatMulReshapeNet(strategy1, strategy2) x = Tensor(np.ones([128, 28]), ms.float32) strategies = compile_graph(x, net) for (k, v) in strategies.items(): if re.search('VirtualOutput-op', k) is not None: assert v[0][0] == 8 def test_reshape_mul_semi_auto(): context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel", dataset_strategy="full_batch") net = ReshapeMulNet() x = Tensor(np.ones([64, 4]), ms.float32) strategies = compile_graph(x, net) for (k, v) in strategies.items(): if re.search('VirtualOutput-op', k) is not None: assert v[0][0] == 1 def test_reshape_mul_auto(): context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel", dataset_strategy="full_batch") net = ReshapeMulNet() x = Tensor(np.ones([64, 4]), ms.float32) strategies = compile_graph(x, net) for (k, v) in strategies.items(): if re.search('VirtualOutput-op', k) is not None: assert v[0][0] == 1 def test_scalar_output_semi_auto(): context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel", dataset_strategy="data_parallel") net = ParallelMulNet() loss_fn = nn.SoftmaxCrossEntropyWithLogits(reduction='mean') eval_net = nn.WithEvalCell(net, loss_fn) x = Tensor(np.ones([4096, 1, 2, 1024]).astype(np.float32)*0.01) label = Tensor(np.ones([4096, 250]).astype(np.float32)*0.01) strategies = compile_graph_two_input(x, label, eval_net) count = 0 for (k, v) in strategies.items(): if re.search('VirtualOutput-op', k) is not None: assert v[0][0] == 8 count += 1 assert count == 1 def test_scalar_output_auto(): context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel", dataset_strategy="data_parallel") net = ParallelMulNet() loss_fn = nn.SoftmaxCrossEntropyWithLogits(reduction='mean') eval_net = nn.WithEvalCell(net, loss_fn) x = Tensor(np.ones([4096, 1, 2, 1024]).astype(np.float32)*0.01) label = Tensor(np.ones([4096, 250]).astype(np.float32)*0.01) strategies = compile_graph_two_input(x, label, eval_net) count = 0 for (k, v) in strategies.items(): if re.search('VirtualOutput-op', k) is not None: assert v[0][0] == 8 count += 1 assert count == 1