# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.ops.composite as C from mindspore import Tensor, Parameter from mindspore import context from mindspore.common import dtype as mstype from mindspore.common.parameter import ParameterTuple from mindspore.nn import Cell from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE) grad_by_list = C.GradOperation(get_by_list=True) grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True) grad_by_list_with_sens = C.GradOperation(get_by_list=True, sens_param=True) grad_all = C.GradOperation(get_all=True) grad_with_sens = C.GradOperation(sens_param=True) def test_net_vargs_expand(): class AddNet(Cell): def __init__(self): super(AddNet, self).__init__() self.w = Parameter( Tensor(np.ones((3, 4, 5), np.float32)), "w2", requires_grad=True) def construct(self, x, y): return x + y x = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32)) y = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32)) sens = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32)) net = AddNet() _ = grad_all_with_sens(net, net.trainable_params())(x, y, sens) class VarNet(Cell): def __init__(self, net): super(VarNet, self).__init__() self.b = Parameter( Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b", requires_grad=True) self.w = Parameter( Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "w", requires_grad=True) self.net = net def construct(self, *args): return self.net(*args) * self.w + self.b class SecondNet(Cell): def __init__(self): super(SecondNet, self).__init__() self.b2 = Parameter( Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b2", requires_grad=True) def construct(self, *args): res = args[0] + args[1] return res + self.b2 class Bprop(Cell): def __init__(self, func, wrt_params, params, grad_op, sens=None): super(Bprop, self).__init__(auto_prefix=False) self.func = func self.wrt_params = wrt_params self.params = None if self.wrt_params and params: self.params = ParameterTuple(params) self.grad = grad_op self.with_sens = False self.sens = sens if not sens is None: self.sens = sens if isinstance(sens, Tensor) else Tensor(sens, dtype=mstype.float32) self.with_sens = True def construct(self, *inputs): # pylint: disable=no-else-return if self.wrt_params: if self.with_sens: return self.grad(self.func, self.params)(*inputs, self.sens) else: return self.grad(self.func, self.params)(*inputs) elif self.with_sens: return self.grad(self.func)(*inputs, self.sens) else: return self.grad(self.func)(*inputs) def test_all_var_args_grad_with_sens(): """"test grad_by_list_with_sens with all var args input""" class GradNet(Cell): def __init__(self, net): super(GradNet, self).__init__() self.weights = ParameterTuple(net.trainable_params()) self.net = net def construct(self, *inputs): return grad_by_list_with_sens(self.net, self.weights)(*inputs) x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) sens = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) net = VarNet(SecondNet()) grad_net = GradNet(net) _ = grad_net(x, y, sens) def test_grad_list_var_args(): class GradNet(Cell): def __init__(self, net): super(GradNet, self).__init__() self.weights = ParameterTuple(net.trainable_params()) self.net = net def construct(self, *inputs): return grad_by_list(self.net, self.weights)(*inputs) x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) net = VarNet(SecondNet()) grad_net = GradNet(net) _ = grad_net(x, y) def test_grad_all_var_args(): class GradNet(Cell): def __init__(self, net): super(GradNet, self).__init__() self.weights = ParameterTuple(net.trainable_params()) self.net = net def construct(self, *inputs): return grad_all(self.net)(*inputs) x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) net = VarNet(SecondNet()) grad_net = GradNet(net) _ = grad_net(x, y) def test_grad_all_var_args_with_sens(): class GradNet(Cell): def __init__(self, net): super(GradNet, self).__init__() self.weights = ParameterTuple(net.trainable_params()) self.net = net def construct(self, *inputs): return grad_all_with_sens(self.net)(*inputs) x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) sens = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) net = VarNet(SecondNet()) grad_net = GradNet(net) _ = grad_net(x, y, sens) def test_grad_var_args_with_sens(): class GradNet(Cell): def __init__(self, net): super(GradNet, self).__init__() self.weights = ParameterTuple(net.trainable_params()) self.net = net def construct(self, *inputs): return grad_with_sens(self.net)(*inputs) x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) sens = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) net = VarNet(SecondNet()) grad_net = GradNet(net) _ = grad_net(x, y, sens) def test_grad_with_param_sens(): """"test grad_with_sens parameter""" class GradNet(Cell): def __init__(self, net): super(GradNet, self).__init__() self.weights = ParameterTuple(net.trainable_params()) self.net = net self.sens = Parameter(Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), name='sens', requires_grad=False) self.grad = C.GradOperation(get_by_list=True, sens_param=True) def construct(self, x, y): return self.grad(self.net, self.weights)(x, y, self.sens) x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) net = SecondNet() grad_net = GradNet(net) _ = grad_net(x, y) def test_var_args_grad(): class VarNet(Cell): def __init__(self, net): super(VarNet, self).__init__() self.b = Parameter( Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b", requires_grad=True) self.net = net def construct(self, *args): return self.net(*args) + self.b class SecondNet(Cell): def __init__(self): super(SecondNet, self).__init__() self.b2 = Parameter( Tensor(np.ones([3, 4, 5]), dtype=mstype.float32), "b2", requires_grad=True) def construct(self, *args): res = args[0] + args[1] return res + self.b2 class GradNet(Cell): def __init__(self, net): super(GradNet, self).__init__() self.net = net self.weights = ParameterTuple(net.trainable_params()) def construct(self, x, y, sens): return grad_by_list_with_sens(self.net, self.weights)(x, y, sens) x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) sens = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) net = VarNet(SecondNet()) grad_net = GradNet(net) _ = grad_net(x, y, sens) def test_var_args_positional(): """"test grad_all with var args in inner graph""" class VarNet(Cell): def __init__(self, net): super(VarNet, self).__init__() self.net = net def construct(self, x, y): return self.net(x, y) * x class SecondNet(Cell): def __init__(self): super(SecondNet, self).__init__() def construct(self, *args): return args[0] + args[1] class GradNet(Cell): def __init__(self, net): super(GradNet, self).__init__() self.net = net self.weights = ParameterTuple(net.trainable_params()) def construct(self, x, y): return grad_all(self.net)(x, y) x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) net = VarNet(SecondNet()) grad_net = GradNet(net) _ = grad_net(x, y) def test_grad_within_if_else(): class GradNet(Cell): def __init__(self, net): super(GradNet, self).__init__() self.weights = ParameterTuple(net.trainable_params()) self.net = net grad_op = C.GradOperation(get_all=False, get_by_list=True, sens_param=True) sens = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) self.grad = Bprop(self.net, True, self.weights, grad_op, sens) def construct(self, *inputs): return self.grad(*inputs) x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) net = VarNet(SecondNet()) grad_net = GradNet(net) out = grad_net(x, y) print("test_grad_var_args_with_sens out=", out) def test_grad_for_concat(): class GradNet(Cell): def __init__(self, net): super(GradNet, self).__init__() self.weights = ParameterTuple(net.trainable_params()) self.net = net grad_op = C.GradOperation(get_all=True, get_by_list=False, sens_param=True) self.grad = Bprop(self.net, False, self.weights, grad_op) def construct(self, *inputs): return self.grad(*inputs) class Concat(Cell): def __init__(self, axis): super().__init__() self.concat = P.Concat(axis=axis) def construct(self, *input1): return self.concat(input1) class ConcatFactory: def __init__(self, input_shape, axis, dtype=np.float32): super(ConcatFactory, self).__init__() self.inputs_np = [] for s in input_shape: self.inputs_np.append(np.random.randn(*s).astype(dtype)) self.axis = axis self.out_numpy = np.concatenate(self.inputs_np, axis=self.axis) self.out_grad_np = self.out_numpy def grad_mindspore_impl(self): inputs = [] for i in self.inputs_np: inputs.append(Tensor(i)) net = Concat(axis=self.axis) grad_net = GradNet(net) grad_net.set_train() _ = grad_net(*inputs, Tensor(self.out_grad_np)) def grad_cmp(self): self.grad_mindspore_impl() fact = ConcatFactory(input_shape=( (2, 184320, 1), (2, 46080, 1), (2, 11520, 1), (2, 2880, 1), (2, 720, 1)), axis=1) fact.grad_cmp()