# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_mean """ import mindspore as ms from mindspore import nn from mindspore import context context.set_context(mode=context.GRAPH_MODE) def test_mean(): class Net(nn.Cell): def __init__(self): super().__init__() self.value = ms.Tensor([[1, 2, 3], [4, 5, 6]], dtype=ms.float32) def construct(self): return self.value.mean() net = Net() net() def test_mean_axis(): class Net(nn.Cell): def __init__(self): super().__init__() self.value = ms.Tensor([[1, 2, 3], [4, 5, 6]], dtype=ms.float32) def construct(self): return self.value.mean(axis=1) net = Net() net() def test_mean_parameter(): class Net(nn.Cell): def __init__(self): super().__init__() def construct(self, x): return x.mean() x = ms.Tensor([[1, 2, 3], [1, 2, 3]], dtype=ms.float32) net = Net() net(x) def test_mean_parameter_axis(): class Net(nn.Cell): def __init__(self): super().__init__() def construct(self, x): return x.mean(axis=1) x = ms.Tensor([[1, 2, 3], [1, 2, 3]], dtype=ms.float32) net = Net() net(x)