# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test nn.Dense """ import numpy as np import pytest import mindspore.nn as nn from mindspore import Tensor # pylint: disable=E1123 def test_dense_defaultbias_noactivation(): weight = Tensor(np.array([[0.1, 0.3, 0.4], [0.1, 0.3, 0.4]], dtype=np.float32)) dense = nn.Dense(3, 2, weight) assert dense.activation is None input_data = Tensor(np.random.randint(0, 255, [1, 3]).astype(np.float32)) output = dense(input_data) output_np = output.asnumpy() assert isinstance(output_np[0][0], (np.float32, np.float64)) def test_dense_defaultweight(): bias = Tensor(np.array([0.5, 0.3], dtype=np.float32)) dense = nn.Dense(3, 2, bias_init=bias) # batch_size 1 && 3-channel RGB input_data = Tensor(np.random.randint(0, 255, [1, 3]).astype(np.float32)) output = dense(input_data) output_np = output.asnumpy() assert isinstance(output_np[0][0], (np.float32, np.float64)) def test_dense_bias(): weight = Tensor(np.array([[0.1, 0.3, 0.6], [0.4, 0.5, 0.2]], dtype=np.float32)) bias = Tensor(np.array([0.5, 0.3], dtype=np.float32)) dense = nn.Dense(3, 2, weight, bias) input_data = Tensor(np.random.randint(0, 255, [2, 3]).astype(np.float32)) output = dense(input_data) output_np = output.asnumpy() assert isinstance(output_np[0][0], (np.float32, np.float64)) def test_dense_nobias(): weight = Tensor(np.array([[0.1, 0.3, 0.6], [0.4, 0.5, 0.2]], dtype=np.float32)) dense = nn.Dense(3, 2, weight, has_bias=False) input_data = Tensor(np.random.randint(0, 255, [2, 3]).astype(np.float32)) output = dense(input_data) output_np = output.asnumpy() assert isinstance(output_np[0][0], (np.float32, np.float64)) def test_dense_none(): with pytest.raises(TypeError): nn.Dense(3, 2, None, None) def test_dense_str_activation(): dense = nn.Dense(1, 1, activation='relu') assert isinstance(dense.activation, nn.ReLU) input_data = Tensor(np.random.randint(0, 255, [1, 1]).astype(np.float32)) output = dense(input_data) output_np = output.asnumpy() assert isinstance(output_np[0][0], np.float32) def test_dense_weight_error(): dim_error = Tensor(np.array([[[0.1], [0.3], [0.6]], [[0.4], [0.5], [0.2]]])) with pytest.raises(ValueError): nn.Dense(3, 2, dim_error) shape_error = Tensor(np.array([[0.1, 0.3, 0.6], [0.4, 0.5, 0.2]])) with pytest.raises(ValueError): nn.Dense(2, 2, shape_error) with pytest.raises(ValueError): nn.Dense(3, 3, shape_error) def test_dense_bias_error(): dim_error = Tensor(np.array([[0.5, 0.3]])) with pytest.raises(ValueError): nn.Dense(3, 2, bias_init=dim_error) shape_error = Tensor(np.array([0.5, 0.3, 0.4])) with pytest.raises(ValueError): nn.Dense(3, 2, bias_init=shape_error) def test_dense_dtype_error(): with pytest.raises(TypeError): nn.Dense(3, 2, dtype=3) def test_dense_channels_error(): with pytest.raises(ValueError): nn.Dense(3, 0) with pytest.raises(ValueError): nn.Dense(-1, 2)