# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_loss """ import numpy as np import pytest import mindspore.nn as nn from mindspore import Tensor from ...ut_filter import non_graph_engine def test_L1Loss(): loss = nn.L1Loss() input_data = Tensor(np.array([1, 2, 3])) target_data = Tensor(np.array([1, 2, 2])) with pytest.raises(NotImplementedError): loss.construct(input_data, target_data) @non_graph_engine def test_SoftmaxCrossEntropyWithLogits(): """ test_SoftmaxCrossEntropyWithLogits """ loss = nn.SoftmaxCrossEntropyWithLogits() logits = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32)) labels = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32)) loss.construct(logits, labels)