# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test pooling api """ import numpy as np import pytest import mindspore.nn as nn from mindspore import Tensor def test_avgpool2d(): """ test_avgpool2d """ kernel_size = 3 stride = 2 avg_pool = nn.AvgPool2d(kernel_size, stride) assert avg_pool.kernel_size == 3 assert avg_pool.stride == 2 input_data = Tensor(np.random.randint(0, 255, [1, 3, 6, 6]) * 0.1) output = avg_pool(input_data) output_np = output.asnumpy() assert isinstance(output_np[0][0][0][0], (np.float32, np.float64)) def test_avgpool2d_error_input(): """ test_avgpool2d_error_input """ kernel_size = 5 stride = 2.3 with pytest.raises(TypeError): nn.AvgPool2d(kernel_size, stride) def test_maxpool2d(): """ test_maxpool2d """ kernel_size = 3 stride = 3 max_pool = nn.MaxPool2d(kernel_size, stride, pad_mode='SAME') assert max_pool.kernel_size == 3 assert max_pool.stride == 3 input_data = Tensor(np.random.randint(0, 255, [1, 3, 6, 6]) * 0.1) output = max_pool(input_data) output_np = output.asnumpy() assert isinstance(output_np[0][0][0][0], (np.float32, np.float64))