• Home
  • Raw
  • Download

Lines Matching refs:Cs

355                                 f(Cs,Cd) = 0
358 f(Cs,Cd) = Cs
361 f(Cs,Cd) = Cd
364 f(Cs,Cd) = Cs
367 f(Cs,Cd) = Cd
370 f(Cs,Cd) = Cs
373 f(Cs,Cd) = Cd
376 f(Cs,Cd) = 0
379 f(Cs,Cd) = 0
382 f(Cs,Cd) = Cs
385 f(Cs,Cd) = Cd
388 f(Cs,Cd) = 0
391 f(Cs,Cd) = Cs*Cd
394 f(Cs,Cd) = Cs+Cd-Cs*Cd
397 f(Cs,Cd) = 2*Cs*Cd, if Cd <= 0.5
398 1-2*(1-Cs)*(1-Cd), otherwise
401 f(Cs,Cd) = min(Cs,Cd)
404 f(Cs,Cd) = max(Cs,Cd)
407 f(Cs,Cd) =
409 min(1,Cd/(1-Cs)), if Cd > 0 and Cs < 1
410 1, if Cd > 0 and Cs >= 1
413 f(Cs,Cd) =
415 1 - min(1,(1-Cd)/Cs), if Cd < 1 and Cs > 0
416 0, if Cd < 1 and Cs <= 0
419 f(Cs,Cd) = 2*Cs*Cd, if Cs <= 0.5
420 1-2*(1-Cs)*(1-Cd), otherwise
423 f(Cs,Cd) =
424 Cd-(1-2*Cs)*Cd*(1-Cd),
425 if Cs <= 0.5
426 Cd+(2*Cs-1)*Cd*((16*Cd-12)*Cd+3),
427 if Cs > 0.5 and Cd <= 0.25
428 Cd+(2*Cs-1)*(sqrt(Cd)-Cd),
429 if Cs > 0.5 and Cd > 0.25
432 f(Cs,Cd) = abs(Cd-Cs)
435 f(Cs,Cd) = Cs+Cd-2*Cs*Cd
438 f(Cs,Cd) = 1-Cd
441 f(Cs,Cd) = Cs*(1-Cd)
444 f(Cs,Cd) =
445 Cs+Cd, if Cs+Cd<=1
449 f(Cs,Cd) =
450 Cs+Cd-1, if Cs+Cd>1
454 f(Cs,Cd) =
455 1-min(1,(1-Cd)/(2*Cs)), if 0 < Cs < 0.5
456 0, if Cs <= 0
457 min(1,Cd/(2*(1-Cs))), if 0.5 <= Cs < 1
458 1, if Cs >= 1
461 f(Cs,Cd) =
462 1, if 2*Cs+Cd>2
463 2*Cs+Cd-1, if 1 < 2*Cs+Cd <= 2
464 0, if 2*Cs+Cd<=1
467 f(Cs,Cd) =
468 0, if 2*Cs-1>Cd and Cs<0.5
469 2*Cs-1, if 2*Cs-1>Cd and Cs>=0.5
470 2*Cs, if 2*Cs-1<=Cd and Cs<0.5*Cd
471 Cd, if 2*Cs-1<=Cd and Cs>=0.5*Cd
475 f(Cs,Cd) = 0, if Cs+Cd<1
555 f(Cs,Cd) = SetLumSat(Cs,Cd,Cd);
558 f(Cs,Cd) = SetLumSat(Cd,Cs,Cd);
561 f(Cs,Cd) = SetLum(Cs,Cd);
564 f(Cs,Cd) = SetLum(Cd,Cs);
1065 * a function f(Cs,Cd) specifies the blended color contribution in the
1218 errors, there is a local minimum at Cs=0.5 (where we switch from the
1220 discontinuity at Cd=0.125 when Cs>0.5 (where we switch from the second
1221 form to the third). For example, when Cs=0.8 and Cd=0.125, the second
1225 third forms generate 0.25625 and 0.26213, respectively, when Cs=0.8 and
1328 The PLUS_NV equation could be expressed with f(Cs,Cd) = Cs+Cd, X=2, Y=1,
1331 could be expressed with f(Cs,Cd) = Cd-Cs, X=1, Y=-1, and Z=1. The Y=-1
1613 f(Cs,Cd) = 1 // their B() is our f()
1614 else if (Cs == 0)
1615 f(Cs,Cd) = 0
1617 f(Cs,Cd) = 1 - min(1, (1-Cd)/Cs)
1627 if (Cs == 0)
1628 f(Cs,Cd) = 0
1630 f(Cs,Cd) = 1 - min(1, (1-Cd)/Cs)
1661 1 - min(1, (1-Cd)/Cs)
1663 Cs operates as a sort of fudge factor where a value of 1.0 implies no
1666 by 1/Cs and then clamped to maximum exposure by the min() operation.
1672 hit the second special case if Cs==0 (infinite exposure time), which