/** * Copyright 2021 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "common/common_test.h" #include "include/api/model.h" #include "include/api/serialization.h" #include "include/api/context.h" using namespace mindspore; static constexpr char kIfbyIfFile[] = "/home/workspace/mindspore_dataset/mindir/control/ifbyif.mindir"; static constexpr char kSimpleWhileFile[] = "/home/workspace/mindspore_dataset/mindir/control/simple_while.mindir"; static constexpr char kMixIfWhileFile[] = "/home/workspace/mindspore_dataset/mindir/control/mix_while_if.mindir"; static constexpr char kRecursiveFile[] = "/home/workspace/mindspore_dataset/mindir/control/fibonacci.mindir"; static constexpr char kSingleForFile[] = "/home/workspace/mindspore_dataset/mindir/control/single_for.mindir"; static constexpr char kSingleOrFile[] = "/home/workspace/mindspore_dataset/mindir/control/single_or.mindir"; static constexpr char kSingleSwitchFile[] = "/home/workspace/mindspore_dataset/mindir/control/switch_layer_net.mindir"; static constexpr float kConstValue = 0.1234; static const std::vector input_data(2 * 3 * 4 * 5, kConstValue); class TestControl : public ST::Common { public: TestControl() {} }; TEST_F(TestControl, InferIfbyIf) { auto context = ContextAutoSet(); Graph graph; ASSERT_TRUE(Serialization::Load(kIfbyIfFile, ModelType::kMindIR, &graph)); Model control_model; ASSERT_TRUE(control_model.Build(GraphCell(graph), context) == kSuccess); // assert inputs std::vector inputs_before = control_model.GetInputs(); ASSERT_EQ(5, inputs_before.size()); EXPECT_EQ(inputs_before[0].DataType(), DataType::kNumberTypeFloat32); EXPECT_EQ(inputs_before[1].DataType(), DataType::kNumberTypeFloat32); EXPECT_EQ(inputs_before[2].DataType(), DataType::kNumberTypeBool); EXPECT_EQ(inputs_before[3].DataType(), DataType::kNumberTypeBool); EXPECT_EQ(inputs_before[4].DataType(), DataType::kNumberTypeFloat32); ASSERT_EQ(inputs_before[0].DataSize(), sizeof(float)); ASSERT_EQ(inputs_before[1].DataSize(), sizeof(float)); ASSERT_EQ(inputs_before[2].DataSize(), sizeof(bool)); ASSERT_EQ(inputs_before[3].DataSize(), sizeof(bool)); ASSERT_EQ(inputs_before[4].DataSize(), sizeof(float) * input_data.size()); ASSERT_EQ(inputs_before[0].Shape().size(), 1); EXPECT_EQ(inputs_before[0].Shape()[0], 1); ASSERT_EQ(inputs_before[1].Shape().size(), 1); EXPECT_EQ(inputs_before[1].Shape()[0], 1); ASSERT_EQ(inputs_before[2].Shape().size(), 1); EXPECT_EQ(inputs_before[2].Shape()[0], 1); ASSERT_EQ(inputs_before[3].Shape().size(), 1); EXPECT_EQ(inputs_before[3].Shape()[0], 1); ASSERT_EQ(inputs_before[4].Shape().size(), 4); EXPECT_EQ(inputs_before[4].Shape()[0], 2); EXPECT_EQ(inputs_before[4].Shape()[1], 3); EXPECT_EQ(inputs_before[4].Shape()[2], 4); EXPECT_EQ(inputs_before[4].Shape()[3], 5); // assert outputs std::vector outputs_before = control_model.GetOutputs(); ASSERT_EQ(1, outputs_before.size()); EXPECT_EQ(outputs_before[0].DataType(), DataType::kNumberTypeFloat32); ASSERT_TRUE(outputs_before[0].DataSize() == sizeof(float) * input_data.size()); ASSERT_EQ(outputs_before[0].Shape().size(), 4); EXPECT_EQ(outputs_before[0].Shape()[0], 2); EXPECT_EQ(outputs_before[0].Shape()[1], 3); EXPECT_EQ(outputs_before[0].Shape()[2], 4); EXPECT_EQ(outputs_before[0].Shape()[3], 5); // prepare input std::vector outputs; std::vector inputs; float x = 2.345678, y = 1.234567; bool cond1 = true, cond2 = false; inputs.emplace_back(inputs_before[0].Name(), inputs_before[0].DataType(), inputs_before[0].Shape(), &x, sizeof(float)); inputs.emplace_back(inputs_before[1].Name(), inputs_before[1].DataType(), inputs_before[1].Shape(), &y, sizeof(float)); inputs.emplace_back(inputs_before[2].Name(), inputs_before[2].DataType(), inputs_before[2].Shape(), &cond1, sizeof(bool)); inputs.emplace_back(inputs_before[3].Name(), inputs_before[3].DataType(), inputs_before[3].Shape(), &cond2, sizeof(bool)); inputs.emplace_back(inputs_before[4].Name(), inputs_before[4].DataType(), inputs_before[4].Shape(), input_data.data(), sizeof(float) * input_data.size()); // infer ASSERT_TRUE(control_model.Predict(inputs, &outputs) == kSuccess); // assert output ASSERT_TRUE(outputs.size() == 1); auto out = outputs[0]; ASSERT_TRUE(out.DataSize() == sizeof(float) * input_data.size()); auto out_data = out.Data(); auto p = reinterpret_cast(out_data.get()); for (size_t i = 0; i < out.DataSize() / sizeof(float); ++i) { ASSERT_LE(std::abs(p[i] - kConstValue * 24), 1e-3); } } TEST_F(TestControl, InferSimpleWhile) { auto context = ContextAutoSet(); Graph graph; ASSERT_TRUE(Serialization::Load(kSimpleWhileFile, ModelType::kMindIR, &graph)); Model control_model; ASSERT_TRUE(control_model.Build(GraphCell(graph), context) == kSuccess); // assert inputs std::vector inputs_before = control_model.GetInputs(); ASSERT_EQ(3, inputs_before.size()); EXPECT_EQ(inputs_before[0].DataType(), DataType::kNumberTypeBool); EXPECT_EQ(inputs_before[1].DataType(), DataType::kNumberTypeBool); EXPECT_EQ(inputs_before[2].DataType(), DataType::kNumberTypeFloat32); ASSERT_EQ(inputs_before[0].DataSize(), sizeof(bool)); ASSERT_EQ(inputs_before[1].DataSize(), sizeof(bool)); ASSERT_EQ(inputs_before[2].DataSize(), sizeof(float) * input_data.size()); ASSERT_EQ(inputs_before[0].Shape().size(), 1); EXPECT_EQ(inputs_before[0].Shape()[0], 1); ASSERT_EQ(inputs_before[1].Shape().size(), 1); EXPECT_EQ(inputs_before[1].Shape()[0], 1); ASSERT_EQ(inputs_before[2].Shape().size(), 4); EXPECT_EQ(inputs_before[2].Shape()[0], 2); EXPECT_EQ(inputs_before[2].Shape()[1], 3); EXPECT_EQ(inputs_before[2].Shape()[2], 4); EXPECT_EQ(inputs_before[2].Shape()[3], 5); // assert outputs std::vector outputs_before = control_model.GetOutputs(); ASSERT_EQ(1, outputs_before.size()); EXPECT_EQ(outputs_before[0].DataType(), DataType::kNumberTypeFloat32); ASSERT_TRUE(outputs_before[0].DataSize() == sizeof(float) * input_data.size()); ASSERT_EQ(outputs_before[0].Shape().size(), 4); EXPECT_EQ(outputs_before[0].Shape()[0], 2); EXPECT_EQ(outputs_before[0].Shape()[1], 3); EXPECT_EQ(outputs_before[0].Shape()[2], 4); EXPECT_EQ(outputs_before[0].Shape()[3], 5); // prepare input std::vector outputs; std::vector inputs; { bool x = true, y = false; inputs.emplace_back(inputs_before[0].Name(), inputs_before[0].DataType(), inputs_before[0].Shape(), &x, sizeof(bool)); inputs.emplace_back(inputs_before[1].Name(), inputs_before[1].DataType(), inputs_before[1].Shape(), &y, sizeof(bool)); inputs.emplace_back(inputs_before[2].Name(), inputs_before[2].DataType(), inputs_before[2].Shape(), input_data.data(), sizeof(float) * input_data.size()); } // infer ASSERT_TRUE(control_model.Predict(inputs, &outputs) == kSuccess); // assert output ASSERT_TRUE(outputs.size() == 1); auto out = outputs[0]; ASSERT_TRUE(out.DataSize() == sizeof(float) * input_data.size()); auto out_data = out.Data(); auto p = reinterpret_cast(out_data.get()); for (size_t i = 0; i < out.DataSize() / sizeof(float); ++i) { ASSERT_LE(std::abs(p[i] - kConstValue * 3), 1e-3); } } TEST_F(TestControl, InferRecursive) { auto context = ContextAutoSet(); Graph graph; ASSERT_TRUE(Serialization::Load(kRecursiveFile, ModelType::kMindIR, &graph)); Model control_model; ASSERT_TRUE(control_model.Build(GraphCell(graph), context) == kSuccess); // assert inputs std::vector inputs_before = control_model.GetInputs(); ASSERT_EQ(1, inputs_before.size()); EXPECT_EQ(inputs_before[0].DataType(), DataType::kNumberTypeInt32); ASSERT_EQ(inputs_before[0].DataSize(), sizeof(int32_t)); ASSERT_EQ(inputs_before[0].Shape().size(), 1); EXPECT_EQ(inputs_before[0].Shape()[0], 1); // assert outputs std::vector outputs_before = control_model.GetOutputs(); ASSERT_EQ(1, outputs_before.size()); EXPECT_EQ(outputs_before[0].DataType(), DataType::kNumberTypeInt32); ASSERT_TRUE(outputs_before[0].DataSize() == sizeof(int32_t)); ASSERT_EQ(outputs_before[0].Shape().size(), 1); EXPECT_EQ(outputs_before[0].Shape()[0], 1); // prepare input std::vector outputs; std::vector inputs; { int32_t x = 7; inputs.emplace_back(inputs_before[0].Name(), inputs_before[0].DataType(), inputs_before[0].Shape(), &x, sizeof(int32_t)); } // infer ASSERT_TRUE(control_model.Predict(inputs, &outputs) == kSuccess); // assert output ASSERT_TRUE(outputs.size() == 1); auto out = outputs[0]; ASSERT_TRUE(out.DataSize() == sizeof(int32_t)); auto out_data = out.Data(); auto p = reinterpret_cast(out_data.get()); ASSERT_EQ(*p, 21); } TEST_F(TestControl, InferMixedWhileIf) { auto context = ContextAutoSet(); Graph graph; ASSERT_TRUE(Serialization::Load(kMixIfWhileFile, ModelType::kMindIR, &graph)); Model control_model; ASSERT_TRUE(control_model.Build(GraphCell(graph), context) == kSuccess); // assert inputs std::vector inputs_before = control_model.GetInputs(); ASSERT_EQ(inputs_before.size(), 5); EXPECT_EQ(inputs_before[0].DataType(), DataType::kNumberTypeInt32); EXPECT_EQ(inputs_before[1].DataType(), DataType::kNumberTypeInt32); EXPECT_EQ(inputs_before[2].DataType(), DataType::kNumberTypeInt32); EXPECT_EQ(inputs_before[3].DataType(), DataType::kNumberTypeInt32); EXPECT_EQ(inputs_before[4].DataType(), DataType::kNumberTypeInt32); ASSERT_EQ(inputs_before[0].DataSize(), sizeof(int32_t)); ASSERT_EQ(inputs_before[1].DataSize(), sizeof(int32_t)); ASSERT_EQ(inputs_before[2].DataSize(), sizeof(int32_t)); ASSERT_EQ(inputs_before[3].DataSize(), sizeof(int32_t)); ASSERT_EQ(inputs_before[4].DataSize(), sizeof(int32_t)); ASSERT_EQ(inputs_before[0].Shape().size(), 1); EXPECT_EQ(inputs_before[0].Shape()[0], 1); ASSERT_EQ(inputs_before[1].Shape().size(), 1); EXPECT_EQ(inputs_before[1].Shape()[0], 1); ASSERT_EQ(inputs_before[2].Shape().size(), 1); EXPECT_EQ(inputs_before[2].Shape()[0], 1); ASSERT_EQ(inputs_before[3].Shape().size(), 1); EXPECT_EQ(inputs_before[3].Shape()[0], 1); ASSERT_EQ(inputs_before[4].Shape().size(), 1); EXPECT_EQ(inputs_before[4].Shape()[0], 1); // assert outputs std::vector outputs_before = control_model.GetOutputs(); ASSERT_EQ(1, outputs_before.size()); EXPECT_EQ(outputs_before[0].DataType(), DataType::kNumberTypeInt32); ASSERT_TRUE(outputs_before[0].DataSize() == sizeof(int32_t)); ASSERT_EQ(outputs_before[0].Shape().size(), 1); EXPECT_EQ(outputs_before[0].Shape()[0], 1); // prepare input std::vector outputs; std::vector inputs; { int32_t x = 2, y = 14, z = 1, c2 = 14, c4 = 0; inputs.emplace_back(inputs_before[0].Name(), inputs_before[0].DataType(), inputs_before[0].Shape(), &x, sizeof(int32_t)); inputs.emplace_back(inputs_before[1].Name(), inputs_before[1].DataType(), inputs_before[1].Shape(), &y, sizeof(int32_t)); inputs.emplace_back(inputs_before[2].Name(), inputs_before[2].DataType(), inputs_before[2].Shape(), &z, sizeof(int32_t)); inputs.emplace_back(inputs_before[3].Name(), inputs_before[3].DataType(), inputs_before[3].Shape(), &c2, sizeof(int32_t)); inputs.emplace_back(inputs_before[4].Name(), inputs_before[4].DataType(), inputs_before[4].Shape(), &c4, sizeof(int32_t)); } // infer ASSERT_TRUE(control_model.Predict(inputs, &outputs) == kSuccess); // assert output ASSERT_TRUE(outputs.size() == 1); auto out = outputs[0]; ASSERT_TRUE(out.DataSize() == sizeof(int32_t)); auto out_data = out.Data(); auto p = reinterpret_cast(out_data.get()); ASSERT_EQ(*p, 350); } TEST_F(TestControl, InferSingleFor) { auto context = ContextAutoSet(); Graph graph; ASSERT_TRUE(Serialization::Load(kSingleForFile, ModelType::kMindIR, &graph)); Model control_model; ASSERT_TRUE(control_model.Build(GraphCell(graph), context) == kSuccess); // assert inputs std::vector inputs_before = control_model.GetInputs(); ASSERT_EQ(inputs_before.size(), 3); EXPECT_EQ(inputs_before[0].DataType(), DataType::kNumberTypeInt32); EXPECT_EQ(inputs_before[1].DataType(), DataType::kNumberTypeInt32); EXPECT_EQ(inputs_before[2].DataType(), DataType::kNumberTypeInt32); ASSERT_EQ(inputs_before[0].DataSize(), sizeof(int32_t)); ASSERT_EQ(inputs_before[1].DataSize(), sizeof(int32_t)); ASSERT_EQ(inputs_before[2].DataSize(), sizeof(int32_t)); ASSERT_EQ(inputs_before[0].Shape().size(), 1); EXPECT_EQ(inputs_before[0].Shape()[0], 1); ASSERT_EQ(inputs_before[1].Shape().size(), 1); EXPECT_EQ(inputs_before[1].Shape()[0], 1); ASSERT_EQ(inputs_before[2].Shape().size(), 1); EXPECT_EQ(inputs_before[2].Shape()[0], 1); // assert outputs std::vector outputs_before = control_model.GetOutputs(); ASSERT_EQ(1, outputs_before.size()); EXPECT_EQ(outputs_before[0].DataType(), DataType::kNumberTypeInt32); ASSERT_TRUE(outputs_before[0].DataSize() == sizeof(int32_t)); ASSERT_EQ(outputs_before[0].Shape().size(), 1); EXPECT_EQ(outputs_before[0].Shape()[0], 1); // prepare input std::vector outputs; std::vector inputs; { int32_t x = 2, y = 5, z = 4; inputs.emplace_back(inputs_before[0].Name(), inputs_before[0].DataType(), inputs_before[0].Shape(), &x, sizeof(int32_t)); inputs.emplace_back(inputs_before[1].Name(), inputs_before[1].DataType(), inputs_before[1].Shape(), &y, sizeof(int32_t)); inputs.emplace_back(inputs_before[2].Name(), inputs_before[2].DataType(), inputs_before[2].Shape(), &z, sizeof(int32_t)); } // infer ASSERT_TRUE(control_model.Predict(inputs, &outputs) == kSuccess); // assert output ASSERT_TRUE(outputs.size() == 1); auto out = outputs[0]; ASSERT_TRUE(out.DataSize() == sizeof(int32_t)); auto out_data = out.Data(); auto p = reinterpret_cast(out_data.get()); ASSERT_EQ(*p, 125); } TEST_F(TestControl, InferSingleOr) { auto context = ContextAutoSet(); Graph graph; ASSERT_TRUE(Serialization::Load(kSingleOrFile, ModelType::kMindIR, &graph)); Model control_model; ASSERT_TRUE(control_model.Build(GraphCell(graph), context) == kSuccess); // assert inputs std::vector inputs_before = control_model.GetInputs(); ASSERT_EQ(inputs_before.size(), 2); EXPECT_EQ(inputs_before[0].DataType(), DataType::kNumberTypeFloat32); EXPECT_EQ(inputs_before[1].DataType(), DataType::kNumberTypeFloat32); ASSERT_EQ(inputs_before[0].DataSize(), sizeof(float) * 2); ASSERT_EQ(inputs_before[1].DataSize(), sizeof(float) * 2); ASSERT_EQ(inputs_before[0].Shape().size(), 1); EXPECT_EQ(inputs_before[0].Shape()[0], 2); ASSERT_EQ(inputs_before[1].Shape().size(), 1); EXPECT_EQ(inputs_before[1].Shape()[0], 2); // assert outputs std::vector outputs_before = control_model.GetOutputs(); ASSERT_EQ(1, outputs_before.size()); EXPECT_EQ(outputs_before[0].DataType(), DataType::kNumberTypeFloat32); ASSERT_TRUE(outputs_before[0].DataSize() == sizeof(float)); // prepare input std::vector outputs; std::vector inputs; { static const std::vector input_data1 = {0, 1}; static const std::vector input_data2 = {0, 0}; inputs.emplace_back(inputs_before[0].Name(), inputs_before[0].DataType(), inputs_before[0].Shape(), input_data1.data(), sizeof(float) * input_data1.size()); inputs.emplace_back(inputs_before[1].Name(), inputs_before[1].DataType(), inputs_before[1].Shape(), input_data2.data(), sizeof(int32_t) * input_data2.size()); } // infer ASSERT_TRUE(control_model.Predict(inputs, &outputs) == kSuccess); // assert outputs std::vector outputs_after = control_model.GetOutputs(); ASSERT_EQ(1, outputs_after.size()); EXPECT_EQ(outputs_after[0].DataType(), DataType::kNumberTypeFloat32); ASSERT_TRUE(outputs_after[0].DataSize() == sizeof(float)); EXPECT_EQ(outputs_after[0].Shape().size(), outputs_before[0].Shape().size()); // assert output ASSERT_TRUE(outputs.size() == 1); auto out = outputs[0]; ASSERT_TRUE(out.DataSize() == sizeof(float)); auto out_data = out.Data(); auto p = reinterpret_cast(out_data.get()); ASSERT_EQ(*p, 1); } TEST_F(TestControl, InferSingleSwitch) { auto context = ContextAutoSet(); Graph graph; ASSERT_TRUE(Serialization::Load(kSingleSwitchFile, ModelType::kMindIR, &graph)); Model control_model; ASSERT_TRUE(control_model.Build(GraphCell(graph), context) == kSuccess); // assert inputs std::vector inputs_before = control_model.GetInputs(); ASSERT_EQ(inputs_before.size(), 3); EXPECT_EQ(inputs_before[0].DataType(), DataType::kNumberTypeFloat32); EXPECT_EQ(inputs_before[1].DataType(), DataType::kNumberTypeInt32); EXPECT_EQ(inputs_before[2].DataType(), DataType::kNumberTypeInt32); ASSERT_EQ(inputs_before[0].DataSize(), sizeof(float) * 224 * 224); ASSERT_EQ(inputs_before[1].DataSize(), sizeof(int32_t)); ASSERT_EQ(inputs_before[2].DataSize(), sizeof(int32_t)); ASSERT_EQ(inputs_before[0].Shape().size(), 4); EXPECT_EQ(inputs_before[0].Shape()[0], 1); EXPECT_EQ(inputs_before[0].Shape()[1], 1); EXPECT_EQ(inputs_before[0].Shape()[2], 224); EXPECT_EQ(inputs_before[0].Shape()[3], 224); ASSERT_EQ(inputs_before[1].Shape().size(), 1); EXPECT_EQ(inputs_before[1].Shape()[0], 1); ASSERT_EQ(inputs_before[2].Shape().size(), 1); EXPECT_EQ(inputs_before[2].Shape()[0], 1); // assert outputs std::vector outputs_before = control_model.GetOutputs(); ASSERT_EQ(1, outputs_before.size()); EXPECT_EQ(outputs_before[0].DataType(), DataType::kNumberTypeFloat32); ASSERT_TRUE(outputs_before[0].DataSize() == sizeof(float) * 224 * 224); ASSERT_EQ(outputs_before[0].Shape().size(), 4); EXPECT_EQ(outputs_before[0].Shape()[0], 1); EXPECT_EQ(outputs_before[0].Shape()[1], 1); EXPECT_EQ(outputs_before[0].Shape()[2], 224); EXPECT_EQ(outputs_before[0].Shape()[3], 224); // prepare input std::vector outputs; std::vector inputs; { static const std::vector input_data1(1 * 1 * 224 * 224, 1); int32_t index1 = 0; int32_t index2 = -1; inputs.emplace_back(inputs_before[0].Name(), inputs_before[0].DataType(), inputs_before[0].Shape(), input_data1.data(), sizeof(float) * input_data1.size()); inputs.emplace_back(inputs_before[1].Name(), inputs_before[1].DataType(), inputs_before[1].Shape(), &index1, sizeof(int32_t)); inputs.emplace_back(inputs_before[2].Name(), inputs_before[2].DataType(), inputs_before[2].Shape(), &index2, sizeof(int32_t)); } // infer ASSERT_TRUE(control_model.Predict(inputs, &outputs) == kSuccess); // assert output ASSERT_TRUE(outputs.size() == 1); auto out = outputs[0]; ASSERT_TRUE(out.DataSize() == sizeof(float) * 224 * 224); auto out_data = out.Data(); auto p = reinterpret_cast(out_data.get()); for (size_t i = 0; i < out.DataSize() / sizeof(float); ++i) { ASSERT_EQ(p[i], 1); } }