# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P from mindspore.ops.composite import GradOperation from mindspore.ops.operations import _inner_ops as inner class Grad(nn.Cell): def __init__(self, network): super(Grad, self).__init__() self.grad = GradOperation(get_all=True, sens_param=True) self.network = network def construct(self, input_x, dout): return self.grad(self.network)(input_x, dout) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.HSigmoid = P.HSigmoid() def construct(self, x): return self.HSigmoid(x) class DynamicNet(nn.Cell): def __init__(self): super(DynamicNet, self).__init__() self.HSigmoid = P.HSigmoid() self.d = inner.GpuConvertToDynamicShape() def construct(self, x): x = self.d(x) return self.HSigmoid(x) def generate_testcases(nptype): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x = np.array([-1, -2, 0, 4, 5]).astype(nptype) net = Net() output = net(Tensor(x)) expect = np.array([0.33333334, 0.16666667, 0.5, 1, 1]).astype(nptype) np.testing.assert_almost_equal(output.asnumpy(), expect) sens = np.array([-1.45, 0.63, 0.34, 6.43, 34.6]).astype(nptype) backward_net = Grad(Net()) output = backward_net(Tensor(x), Tensor(sens)) expect = np.array([-0.2416667, 0.1049999, 5.66666685e-02, 0, 0]).astype(nptype) np.testing.assert_almost_equal(output[0].asnumpy(), expect) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") x = np.array([-1, -2, 0, 4, 5]).astype(nptype) net = Net() output = net(Tensor(x)) expect = np.array([0.33333334, 0.16666667, 0.5, 1, 1]).astype(nptype) np.testing.assert_almost_equal(output.asnumpy(), expect) sens = np.array([-1.45, 0.63, 0.34, 6.43, 34.6]).astype(nptype) backward_net = Grad(Net()) output = backward_net(Tensor(x), Tensor(sens)) expect = np.array([-0.2416667, 0.1049999, 5.66666685e-02, 0, 0]).astype(nptype) np.testing.assert_almost_equal(output[0].asnumpy(), expect) def generate_dynamic_testcase(nptype): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x = np.array([-1, -2, 0, 2, 1]).astype(nptype) net = DynamicNet() output = net(Tensor(x)) expect = np.array([0.33333334, 0.16666667, 0.5, 0.8333333, 0.6666667]).astype(nptype) np.testing.assert_almost_equal(output.asnumpy(), expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_hsigmoid_dynamic_float32(): generate_dynamic_testcase(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_hsigmoid_float32(): generate_testcases(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_hsigmoid_float16(): generate_testcases(np.float16)