# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P from mindspore.ops import composite as C from mindspore.ops.operations import _inner_ops as inner class MatMulNet(nn.Cell): def __init__(self): super(MatMulNet, self).__init__() self.matmul = P.MatMul() def construct(self, x, y): return self.matmul(x, y) class MatMul_d(nn.Cell): def __init__(self): super(MatMul_d, self).__init__() self.test_dynamic = inner.GpuConvertToDynamicShape() self.matmul = P.MatMul() def construct(self, x, y): x = self.test_dynamic(x) y = self.test_dynamic(y) return self.matmul(x, y) class MatMulComposite(nn.Cell): def __init__(self): super(MatMulComposite, self).__init__() self.matmul = C.matmul def construct(self, x, y): return self.matmul(x, y) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_MatMul_dynamic(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = MatMul_d() x1 = np.arange(2).reshape(1, 2).astype(np.float32) y1 = np.arange(4).reshape(2, 2).astype(np.float32) output1 = net(Tensor(x1), Tensor(y1)) expect1 = np.matmul(x1, y1) np.testing.assert_array_almost_equal(output1.asnumpy(), expect1) x2 = np.arange(102).reshape(34, 3).astype(np.float32) y2 = np.arange(18).reshape(3, 6).astype(np.float32) output2 = net(Tensor(x2), Tensor(y2)) expect2 = np.matmul(x2, y2) np.testing.assert_array_almost_equal(output2.asnumpy(), expect2) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_matmul_float64(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = MatMulNet() x = np.arange(102).reshape(34, 3).astype(np.float64) y = np.arange(18).reshape(3, 6).astype(np.float64) output = net(Tensor(x), Tensor(y)) expect = np.matmul(x, y) np.testing.assert_array_almost_equal(output.asnumpy(), expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_matmul_composite(): context.set_context(mode=context.GRAPH_MODE, device_target='GPU') net = MatMulComposite() scalars = [np.random.randn(1).astype(np.float32), np.random.randn(1).astype(np.float32), np.random.randn(1, 1).astype(np.float32), np.random.randn(1, 1, 1).astype(np.float32)] for x in scalars: for y in scalars: output = net(Tensor(x), Tensor(y)) expect = np.matmul(x, y) np.testing.assert_array_almost_equal(output.asnumpy(), expect, decimal=4) broadcastables = [ np.random.randn(3).astype(np.float32), np.random.randn(3).astype(np.float32), np.random.randn(6).astype(np.float32), np.random.randn(6, 4).astype(np.float32), np.random.randn(5, 2).astype(np.float32), np.random.randn(2).astype(np.float32), np.random.randn(2, 9).astype(np.float32), np.random.randn(9, 8).astype(np.float32), np.random.randn(6).astype(np.float32), np.random.randn(2, 6, 5).astype(np.float32), np.random.randn(9, 2, 7).astype(np.float32), np.random.randn(7).astype(np.float32), np.random.randn(5, 2, 4).astype(np.float32), np.random.randn(6, 1, 4, 9).astype(np.float32), np.random.randn(7, 1, 5, 3, 2).astype(np.float32), np.random.randn(8, 1, 6, 1, 2, 9).astype(np.float32) ] for i in range(8): x = broadcastables[2*i] y = broadcastables[2*i + 1] output = net(Tensor(x), Tensor(y)) expect = np.matmul(x, y) np.testing.assert_array_almost_equal(output.asnumpy(), expect, decimal=4)