# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor from mindspore.nn import Cell import mindspore.ops.operations as P import mindspore.common.dtype as mstype class Net(Cell): def __init__(self): super(Net, self).__init__() self.oneslike = P.OnesLike() def construct(self, shape, dtype, x): return self.oneslike(x) def get_output(shape, dtype, nptype, enable_graph_kernel=False): context.set_context(enable_graph_kernel=enable_graph_kernel) net = Net() x = Tensor(np.random.normal(0, 10, shape).astype(nptype)) output = net(shape, dtype, x) return output def test_basic(shape, dtype, nptype): expect = get_output(shape, dtype, nptype, False) output = get_output(shape, dtype, nptype, True) assert np.allclose(expect.asnumpy(), output.asnumpy(), 1.e-4, 1.e-7) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gpu_1(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") test_basic((2, 16), mstype.float16, np.float16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_gpu_2(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") test_basic((4, 32), mstype.float32, np.float32)