/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "common/common_test.h" #include "common/trans.h" #include "utils/utils.h" using namespace std; namespace mindspore { namespace trans { class FormatTransTest : public UT::Common { public: FormatTransTest() = default; void SetUp() override {} void TearDown() override {} }; TEST_F(FormatTransTest, nchw_to_hwcn) { uint16_t data[2 * 2 * 2 * 2] = {12581, 14220, 14937, 14302, 15004, 14951, 14694, 14564, 14069, 14554, 10507, 14787, 13016, 15263, 14872, 10838}; uint16_t res[2 * 2 * 2 * 2] = {12581, 14069, 15004, 13016, 14220, 14554, 14951, 15263, 14937, 10507, 14694, 14872, 14302, 14787, 14564, 10838}; size_t device_size = 32; auto trans_tmp = std::vector(device_size); FormatArgs format_args{data, device_size, kOpFormat_NCHW, kOpFormat_HWCN, {2, 2, 2, 2}, {2, 2, 2, 2}, kNumberTypeFloat16}; EXPECT_EQ(trans::TransFormat(format_args, trans_tmp.data()), true); for (size_t i = 0; i < sizeof(res) / sizeof(res[0]); i++) { EXPECT_EQ((reinterpret_cast(trans_tmp.data()))[i], res[i]); } } TEST_F(FormatTransTest, hwcn_to_nchw) { uint16_t data[2 * 2 * 2 * 2] = {12581, 14069, 15004, 13016, 14220, 14554, 14951, 15263, 14937, 10507, 14694, 14872, 14302, 14787, 14564, 10838}; uint16_t res[2 * 2 * 2 * 2] = {12581, 14220, 14937, 14302, 15004, 14951, 14694, 14564, 14069, 14554, 10507, 14787, 13016, 15263, 14872, 10838}; size_t device_size = 32; auto trans_tmp = std::vector(device_size); FormatArgs format_args{data, device_size, kOpFormat_NCHW, kOpFormat_HWCN, {2, 2, 2, 2}, {2, 2, 2, 2}, kNumberTypeFloat16}; EXPECT_EQ(trans::TransFormatFromDeviceToHost(format_args, trans_tmp.data()), true); for (size_t i = 0; i < sizeof(res) / sizeof(res[0]); i++) { EXPECT_EQ((reinterpret_cast(trans_tmp.data()))[i], res[i]); } } TEST_F(FormatTransTest, nchw_to_nhwc) { uint16_t data[2 * 2 * 2 * 2] = {11750, 13778, 15007, 15321, 15163, 13446, 15063, 14467, 15056, 13284, 15219, 14797, 12684, 14288, 14855, 14799}; uint16_t res[2 * 2 * 2 * 2] = {11750, 15163, 13778, 13446, 15007, 15063, 15321, 14467, 15056, 12684, 13284, 14288, 15219, 14855, 14797, 14799}; size_t device_size = 32; auto trans_tmp = std::vector(device_size); FormatArgs format_args{data, device_size, kOpFormat_NCHW, kOpFormat_NHWC, {2, 2, 2, 2}, {2, 2, 2, 2}, kNumberTypeFloat16}; EXPECT_EQ(trans::TransFormat(format_args, trans_tmp.data()), true); for (size_t i = 0; i < sizeof(res) / sizeof(res[0]); i++) { EXPECT_EQ((reinterpret_cast(trans_tmp.data()))[i], res[i]); } } TEST_F(FormatTransTest, nhwc_to_nchw) { uint16_t data[2 * 2 * 2 * 2] = {11750, 15163, 13778, 13446, 15007, 15063, 15321, 14467, 15056, 12684, 13284, 14288, 15219, 14855, 14797, 14799}; uint16_t res[2 * 2 * 2 * 2] = {11750, 13778, 15007, 15321, 15163, 13446, 15063, 14467, 15056, 13284, 15219, 14797, 12684, 14288, 14855, 14799}; size_t device_size = 32; auto trans_tmp = std::vector(device_size); FormatArgs format_args{data, device_size, kOpFormat_NCHW, kOpFormat_NHWC, {2, 2, 2, 2}, {2, 2, 2, 2}, kNumberTypeFloat16}; EXPECT_EQ(trans::TransFormatFromDeviceToHost(format_args, trans_tmp.data()), true); for (size_t i = 0; i < sizeof(res) / sizeof(res[0]); i++) { EXPECT_EQ((reinterpret_cast(trans_tmp.data()))[i], res[i]); } } class ShapeTransTest : public UT::Common { public: ShapeTransTest() = default; void SetUp() override {} void TearDown() override {} }; TEST_F(ShapeTransTest, fraczn_rnn_device_shape) { std::vector host_shape = {43, 120}; std::string format = kOpFormat_FRACTAL_ZN_RNN; std::vector input_hidden_size = {13, 30}; auto trans_shape = trans::TransShapeToDevice(host_shape, format, 1, input_hidden_size); const std::vector expect_shape = {3, 8, 16, 16}; EXPECT_EQ(trans_shape.size(), expect_shape.size()); for (size_t i = 0; i < expect_shape.size(); i++) { EXPECT_EQ(trans_shape[i], expect_shape[i]); } } TEST_F(ShapeTransTest, nd_rnn_bias_device_shape) { std::vector host_shape = {120}; std::string format = kOpFormat_ND_RNN_BIAS; std::vector input_hidden_size = {13, 30}; auto trans_shape = trans::TransShapeToDevice(host_shape, format, 1, input_hidden_size); std::vector expect_shape = {128}; EXPECT_EQ(trans_shape.size(), expect_shape.size()); for (size_t i = 0; i < expect_shape.size(); i++) { EXPECT_EQ(trans_shape[i], expect_shape[i]); } } TEST_F(ShapeTransTest, fraczn_rnn_dynamic_device_shape) { std::vector host_shape = {-1, -1}; std::string format = kOpFormat_FRACTAL_ZN_RNN; std::vector input_hidden_size = {13, 30}; auto trans_shape = trans::TransShapeToDevice(host_shape, format, 1, input_hidden_size); const std::vector expect_shape = {-1, -1, 16, 16}; EXPECT_EQ(trans_shape.size(), expect_shape.size()); for (size_t i = 0; i < expect_shape.size(); i++) { EXPECT_EQ(trans_shape[i], expect_shape[i]); } } TEST_F(ShapeTransTest, nd_rnn_bias_dynamic_device_shape) { std::vector host_shape = {-1}; std::string format = kOpFormat_ND_RNN_BIAS; std::vector input_hidden_size = {13, 30}; auto trans_shape = trans::TransShapeToDevice(host_shape, format, 1, input_hidden_size); std::vector expect_shape = {-1}; EXPECT_EQ(trans_shape.size(), expect_shape.size()); for (size_t i = 0; i < expect_shape.size(); i++) { EXPECT_EQ(trans_shape[i], expect_shape[i]); } } } // namespace trans } // namespace mindspore