/** * Copyright 2020-2021 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include "common/common.h" #include "lite_cv/lite_mat.h" #include "lite_cv/image_process.h" #include "minddata/dataset/kernels/image/resize_cubic_op.h" using namespace mindspore::dataset; class MindDataImageProcess : public UT::Common { public: MindDataImageProcess() {} void SetUp() {} }; void CompareMat(cv::Mat cv_mat, LiteMat lite_mat) { int cv_h = cv_mat.rows; int cv_w = cv_mat.cols; int cv_c = cv_mat.channels(); int lite_h = lite_mat.height_; int lite_w = lite_mat.width_; int lite_c = lite_mat.channel_; ASSERT_TRUE(cv_h == lite_h); ASSERT_TRUE(cv_w == lite_w); ASSERT_TRUE(cv_c == lite_c); } void Lite3CImageProcess(LiteMat &lite_mat_bgr, LiteMat &lite_norm_mat_cut) { bool ret; LiteMat lite_mat_resize; ret = ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256); ASSERT_TRUE(ret == true); LiteMat lite_mat_convert_float; ret = ConvertTo(lite_mat_resize, lite_mat_convert_float, 1.0); ASSERT_TRUE(ret == true); LiteMat lite_mat_crop; ret = Crop(lite_mat_convert_float, lite_mat_crop, 16, 16, 224, 224); ASSERT_TRUE(ret == true); std::vector means = {0.485, 0.456, 0.406}; std::vector stds = {0.229, 0.224, 0.225}; SubStractMeanNormalize(lite_mat_crop, lite_norm_mat_cut, means, stds); return; } cv::Mat cv3CImageProcess(cv::Mat &image) { cv::Mat resize_256_image; cv::resize(image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR); cv::Mat float_256_image; resize_256_image.convertTo(float_256_image, CV_32FC3); cv::Mat roi_224_image; cv::Rect roi; roi.x = 16; roi.y = 16; roi.width = 224; roi.height = 224; float_256_image(roi).copyTo(roi_224_image); float meanR = 0.485; float meanG = 0.456; float meanB = 0.406; float varR = 0.229; float varG = 0.224; float varB = 0.225; cv::Scalar mean = cv::Scalar(meanR, meanG, meanB); cv::Scalar var = cv::Scalar(varR, varG, varB); cv::Mat imgMean(roi_224_image.size(), CV_32FC3, mean); cv::Mat imgVar(roi_224_image.size(), CV_32FC3, var); cv::Mat imgR1 = roi_224_image - imgMean; cv::Mat imgR2 = imgR1 / imgVar; return imgR2; } void AccuracyComparison(const std::vector> &expect, LiteMat &value) { for (int i = 0; i < expect.size(); i++) { for (int j = 0; j < expect[0].size(); j++) { double middle = std::fabs(expect[i][j] - value.ptr(i)[j]); ASSERT_TRUE(middle <= 0.005); } } } TEST_F(MindDataImageProcess, testRGB) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat rgba_mat; cv::cvtColor(image, rgba_mat, CV_BGR2RGB); bool ret = false; LiteMat lite_mat_rgb; ret = InitFromPixel(rgba_mat.data, LPixelType::RGB, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_rgb); ASSERT_TRUE(ret == true); cv::Mat dst_image(lite_mat_rgb.height_, lite_mat_rgb.width_, CV_8UC3, lite_mat_rgb.data_ptr_); } TEST_F(MindDataImageProcess, testLoadByMemPtr) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat rgba_mat; cv::cvtColor(image, rgba_mat, CV_BGR2RGB); bool ret = false; int width = rgba_mat.cols; int height = rgba_mat.rows; uchar *p_rgb = (uchar *)malloc(width * height * 3 * sizeof(uchar)); for (int i = 0; i < height; i++) { const uchar *current = rgba_mat.ptr(i); for (int j = 0; j < width; j++) { p_rgb[i * width * 3 + 3 * j + 0] = current[3 * j + 0]; p_rgb[i * width * 3 + 3 * j + 1] = current[3 * j + 1]; p_rgb[i * width * 3 + 3 * j + 2] = current[3 * j + 2]; } } LiteMat lite_mat_rgb(width, height, 3, (void *)p_rgb, LDataType::UINT8); LiteMat lite_mat_resize; ret = ResizeBilinear(lite_mat_rgb, lite_mat_resize, 256, 256); ASSERT_TRUE(ret == true); LiteMat lite_mat_convert_float; ret = ConvertTo(lite_mat_resize, lite_mat_convert_float, 1.0); ASSERT_TRUE(ret == true); LiteMat lite_mat_crop; ret = Crop(lite_mat_convert_float, lite_mat_crop, 16, 16, 224, 224); ASSERT_TRUE(ret == true); std::vector means = {0.485, 0.456, 0.406}; std::vector stds = {0.229, 0.224, 0.225}; LiteMat lite_norm_mat_cut; ret = SubStractMeanNormalize(lite_mat_crop, lite_norm_mat_cut, means, stds); int pad_width = lite_norm_mat_cut.width_ + 20; int pad_height = lite_norm_mat_cut.height_ + 20; float *p_rgb_pad = (float *)malloc(pad_width * pad_height * 3 * sizeof(float)); LiteMat makeborder(pad_width, pad_height, 3, (void *)p_rgb_pad, LDataType::FLOAT32); ret = Pad(lite_norm_mat_cut, makeborder, 10, 30, 40, 10, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255); cv::Mat dst_image(pad_height, pad_width, CV_8UC3, p_rgb_pad); free(p_rgb); free(p_rgb_pad); } TEST_F(MindDataImageProcess, test3C) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat cv_image = cv3CImageProcess(image); // convert to RGBA for Android bitmap(rgba) cv::Mat rgba_mat; cv::cvtColor(image, rgba_mat, CV_BGR2RGBA); bool ret = false; LiteMat lite_mat_bgr; ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); LiteMat lite_norm_mat_cut; Lite3CImageProcess(lite_mat_bgr, lite_norm_mat_cut); cv::Mat dst_image(lite_norm_mat_cut.height_, lite_norm_mat_cut.width_, CV_32FC3, lite_norm_mat_cut.data_ptr_); CompareMat(cv_image, lite_norm_mat_cut); } TEST_F(MindDataImageProcess, testCubic3C) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat rgb_mat; cv::cvtColor(image, rgb_mat, CV_BGR2RGB); LiteMat imIn, imOut; int32_t output_width = 24; int32_t output_height = 24; imIn.Init(rgb_mat.cols, rgb_mat.rows, rgb_mat.channels(), rgb_mat.data, LDataType::UINT8); imOut.Init(output_width, output_height, 3, LDataType::UINT8); bool ret = ResizeCubic(imIn, imOut, output_width, output_height); ASSERT_TRUE(ret == true); return; } bool ReadYUV(const char *filename, int w, int h, uint8_t **data) { FILE *f = fopen(filename, "rb"); if (f == nullptr) { return false; } fseek(f, 0, SEEK_END); int size = ftell(f); int expect_size = w * h + 2 * ((w + 1) / 2) * ((h + 1) / 2); if (size != expect_size) { fclose(f); return false; } fseek(f, 0, SEEK_SET); *data = (uint8_t *)malloc(size); size_t re = fread(*data, 1, size, f); if (re != size) { fclose(f); return false; } fclose(f); return true; } TEST_F(MindDataImageProcess, TestRGBA2GRAY) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat gray_image; cv::cvtColor(src_image, gray_image, CV_BGR2GRAY); cv::Mat rgba_mat; cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA); bool ret = false; LiteMat lite_mat_gray; ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray); ASSERT_TRUE(ret == true); double distance = 0.f; int total_size = gray_image.cols * gray_image.rows * gray_image.channels(); for (int i = 0; i < total_size; i++) { distance += pow((uint8_t)gray_image.data[i] - ((uint8_t *)lite_mat_gray)[i], 2); } distance = sqrt(distance / total_size); EXPECT_EQ(distance, 0.0f); } TEST_F(MindDataImageProcess, testNV21ToBGR) { // ffmpeg -i ./data/dataset/apple.jpg -s 1024*800 -pix_fmt nv21 ./data/dataset/yuv/test_nv21.yuv const char *filename = "data/dataset/yuv/test_nv21.yuv"; int w = 1024; int h = 800; uint8_t *yuv_data = nullptr; bool ret = ReadYUV(filename, w, h, &yuv_data); ASSERT_TRUE(ret == true); cv::Mat yuvimg(h * 3 / 2, w, CV_8UC1, yuv_data); cv::Mat rgbimage; cv::cvtColor(yuvimg, rgbimage, cv::COLOR_YUV2BGR_NV21); LiteMat lite_mat_bgr; ret = InitFromPixel(yuv_data, LPixelType::NV212BGR, LDataType::UINT8, w, h, lite_mat_bgr); ASSERT_TRUE(ret == true); cv::Mat dst_image(lite_mat_bgr.height_, lite_mat_bgr.width_, CV_8UC3, lite_mat_bgr.data_ptr_); free(yuv_data); } TEST_F(MindDataImageProcess, testNV12ToBGR) { // ffmpeg -i ./data/dataset/apple.jpg -s 1024*800 -pix_fmt nv12 ./data/dataset/yuv/test_nv12.yuv const char *filename = "data/dataset/yuv/test_nv12.yuv"; int w = 1024; int h = 800; uint8_t *yuv_data = nullptr; bool ret = ReadYUV(filename, w, h, &yuv_data); ASSERT_TRUE(ret == true); cv::Mat yuvimg(h * 3 / 2, w, CV_8UC1); memcpy(yuvimg.data, yuv_data, w * h * 3 / 2); cv::Mat rgbimage; cv::cvtColor(yuvimg, rgbimage, cv::COLOR_YUV2BGR_NV12); LiteMat lite_mat_bgr; ret = InitFromPixel(yuv_data, LPixelType::NV122BGR, LDataType::UINT8, w, h, lite_mat_bgr); ASSERT_TRUE(ret == true); cv::Mat dst_image(lite_mat_bgr.height_, lite_mat_bgr.width_, CV_8UC3, lite_mat_bgr.data_ptr_); free(yuv_data); } TEST_F(MindDataImageProcess, testExtractChannel) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat dst_image; cv::extractChannel(src_image, dst_image, 2); // convert to RGBA for Android bitmap(rgba) cv::Mat rgba_mat; cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA); bool ret = false; LiteMat lite_mat_bgr; ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); LiteMat lite_B; ret = ExtractChannel(lite_mat_bgr, lite_B, 0); ASSERT_TRUE(ret == true); LiteMat lite_R; ret = ExtractChannel(lite_mat_bgr, lite_R, 2); ASSERT_TRUE(ret == true); cv::Mat dst_imageR(lite_R.height_, lite_R.width_, CV_8UC1, lite_R.data_ptr_); // cv::imwrite("./test_lite_r.jpg", dst_imageR); } TEST_F(MindDataImageProcess, testSplit) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); std::vector dst_images; cv::split(src_image, dst_images); // convert to RGBA for Android bitmap(rgba) cv::Mat rgba_mat; cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA); bool ret = false; LiteMat lite_mat_bgr; ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); std::vector lite_all; ret = Split(lite_mat_bgr, lite_all); ASSERT_TRUE(ret == true); ASSERT_TRUE(lite_all.size() == 3); LiteMat lite_r = lite_all[2]; cv::Mat dst_imageR(lite_r.height_, lite_r.width_, CV_8UC1, lite_r.data_ptr_); } TEST_F(MindDataImageProcess, testMerge) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); std::vector dst_images; cv::split(src_image, dst_images); // convert to RGBA for Android bitmap(rgba) cv::Mat rgba_mat; cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA); bool ret = false; LiteMat lite_mat_bgr; ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); std::vector lite_all; ret = Split(lite_mat_bgr, lite_all); ASSERT_TRUE(ret == true); ASSERT_TRUE(lite_all.size() == 3); LiteMat lite_r = lite_all[2]; cv::Mat dst_imageR(lite_r.height_, lite_r.width_, CV_8UC1, lite_r.data_ptr_); LiteMat merge_mat; EXPECT_TRUE(Merge(lite_all, merge_mat)); EXPECT_EQ(merge_mat.height_, lite_mat_bgr.height_); EXPECT_EQ(merge_mat.width_, lite_mat_bgr.width_); EXPECT_EQ(merge_mat.channel_, lite_mat_bgr.channel_); } void Lite1CImageProcess(LiteMat &lite_mat_bgr, LiteMat &lite_norm_mat_cut) { LiteMat lite_mat_resize; int ret = ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256); ASSERT_TRUE(ret == true); LiteMat lite_mat_convert_float; ret = ConvertTo(lite_mat_resize, lite_mat_convert_float); ASSERT_TRUE(ret == true); LiteMat lite_mat_cut; ret = Crop(lite_mat_convert_float, lite_mat_cut, 16, 16, 224, 224); ASSERT_TRUE(ret == true); std::vector means = {0.485}; std::vector stds = {0.229}; ret = SubStractMeanNormalize(lite_mat_cut, lite_norm_mat_cut, means, stds); ASSERT_TRUE(ret == true); return; } cv::Mat cv1CImageProcess(cv::Mat &image) { cv::Mat gray_image; cv::cvtColor(image, gray_image, CV_BGR2GRAY); cv::Mat resize_256_image; cv::resize(gray_image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR); cv::Mat float_256_image; resize_256_image.convertTo(float_256_image, CV_32FC3); cv::Mat roi_224_image; cv::Rect roi; roi.x = 16; roi.y = 16; roi.width = 224; roi.height = 224; float_256_image(roi).copyTo(roi_224_image); float meanR = 0.485; float varR = 0.229; cv::Scalar mean = cv::Scalar(meanR); cv::Scalar var = cv::Scalar(varR); cv::Mat imgMean(roi_224_image.size(), CV_32FC1, mean); cv::Mat imgVar(roi_224_image.size(), CV_32FC1, var); cv::Mat imgR1 = roi_224_image - imgMean; cv::Mat imgR2 = imgR1 / imgVar; return imgR2; } TEST_F(MindDataImageProcess, test1C) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat cv_image = cv1CImageProcess(image); // convert to RGBA for Android bitmap(rgba) cv::Mat rgba_mat; cv::cvtColor(image, rgba_mat, CV_BGR2RGBA); LiteMat lite_mat_bgr; bool ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); LiteMat lite_norm_mat_cut; Lite1CImageProcess(lite_mat_bgr, lite_norm_mat_cut); cv::Mat dst_image(lite_norm_mat_cut.height_, lite_norm_mat_cut.width_, CV_32FC1, lite_norm_mat_cut.data_ptr_); CompareMat(cv_image, lite_norm_mat_cut); } TEST_F(MindDataImageProcess, TestPadd) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); int left = 10; int right = 20; int top = 30; int bottom = 40; cv::Mat b_image; cv::Scalar color = cv::Scalar(255, 255, 255); cv::copyMakeBorder(image, b_image, top, bottom, left, right, cv::BORDER_CONSTANT, color); cv::Mat rgba_mat; cv::cvtColor(image, rgba_mat, CV_BGR2RGBA); LiteMat lite_mat_bgr; bool ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); LiteMat makeborder; ret = Pad(lite_mat_bgr, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255); ASSERT_TRUE(ret == true); size_t total_size = makeborder.height_ * makeborder.width_ * makeborder.channel_; double distance = 0.0f; for (size_t i = 0; i < total_size; i++) { distance += pow((uint8_t)b_image.data[i] - ((uint8_t *)makeborder)[i], 2); } distance = sqrt(distance / total_size); EXPECT_EQ(distance, 0.0f); } TEST_F(MindDataImageProcess, TestPadZero) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); int left = 0; int right = 0; int top = 0; int bottom = 0; cv::Mat b_image; cv::Scalar color = cv::Scalar(255, 255, 255); cv::copyMakeBorder(image, b_image, top, bottom, left, right, cv::BORDER_CONSTANT, color); cv::Mat rgba_mat; cv::cvtColor(image, rgba_mat, CV_BGR2RGBA); LiteMat lite_mat_bgr; bool ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); LiteMat makeborder; ret = Pad(lite_mat_bgr, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255); ASSERT_TRUE(ret == true); size_t total_size = makeborder.height_ * makeborder.width_ * makeborder.channel_; double distance = 0.0f; for (size_t i = 0; i < total_size; i++) { distance += pow((uint8_t)b_image.data[i] - ((uint8_t *)makeborder)[i], 2); } distance = sqrt(distance / total_size); EXPECT_EQ(distance, 0.0f); } TEST_F(MindDataImageProcess, TestPadReplicate) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); int left = 20; int right = 20; int top = 20; int bottom = 20; cv::Mat b_image; cv::copyMakeBorder(image, b_image, top, bottom, left, right, cv::BORDER_REPLICATE); cv::Mat rgba_mat; cv::cvtColor(image, rgba_mat, CV_BGR2RGBA); LiteMat lite_mat_bgr; bool ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); LiteMat makeborder; ret = Pad(lite_mat_bgr, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_REPLICATE); ASSERT_TRUE(ret == true); size_t total_size = makeborder.height_ * makeborder.width_ * makeborder.channel_; double distance = 0.0f; for (size_t i = 0; i < total_size; i++) { distance += pow((uint8_t)b_image.data[i] - ((uint8_t *)makeborder)[i], 2); } distance = sqrt(distance / total_size); EXPECT_EQ(distance, 0.0f); } TEST_F(MindDataImageProcess, TestPadReflect101) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); int left = 20; int right = 20; int top = 20; int bottom = 20; cv::Mat b_image; cv::copyMakeBorder(image, b_image, top, bottom, left, right, cv::BORDER_REFLECT_101); cv::Mat rgba_mat; cv::cvtColor(image, rgba_mat, CV_BGR2RGBA); LiteMat lite_mat_bgr; bool ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); LiteMat makeborder; ret = Pad(lite_mat_bgr, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_REFLECT_101); ASSERT_TRUE(ret == true); size_t total_size = makeborder.height_ * makeborder.width_ * makeborder.channel_; double distance = 0.0f; for (size_t i = 0; i < total_size; i++) { distance += pow((uint8_t)b_image.data[i] - ((uint8_t *)makeborder)[i], 2); } distance = sqrt(distance / total_size); EXPECT_EQ(distance, 0.0f); } TEST_F(MindDataImageProcess, TestGetDefaultBoxes) { std::string benchmark = "data/dataset/testLite/default_boxes.bin"; BoxesConfig config; config.img_shape = {300, 300}; config.num_default = {3, 6, 6, 6, 6, 6}; config.feature_size = {19, 10, 5, 3, 2, 1}; config.min_scale = 0.2; config.max_scale = 0.95; config.aspect_rations = {{2}, {2, 3}, {2, 3}, {2, 3}, {2, 3}, {2, 3}}; config.steps = {16, 32, 64, 100, 150, 300}; config.prior_scaling = {0.1, 0.2}; int rows = 1917; int cols = 4; std::vector benchmark_boxes(rows * cols); std::ifstream in(benchmark, std::ios::in | std::ios::binary); in.read(reinterpret_cast(benchmark_boxes.data()), benchmark_boxes.size() * sizeof(double)); in.close(); std::vector> default_boxes = GetDefaultBoxes(config); EXPECT_EQ(default_boxes.size(), rows); EXPECT_EQ(default_boxes[0].size(), cols); double distance = 0.0f; for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { distance += pow(default_boxes[i][j] - benchmark_boxes[i * cols + j], 2); } } distance = sqrt(distance); EXPECT_LT(distance, 1e-5); } TEST_F(MindDataImageProcess, TestApplyNms) { std::vector> all_boxes = {{1, 1, 2, 2}, {3, 3, 4, 4}, {5, 5, 6, 6}, {5, 5, 6, 6}}; std::vector all_scores = {0.6, 0.5, 0.4, 0.9}; std::vector keep = ApplyNms(all_boxes, all_scores, 0.5, 10); ASSERT_TRUE(keep[0] == 3); ASSERT_TRUE(keep[1] == 0); ASSERT_TRUE(keep[2] == 1); } TEST_F(MindDataImageProcess, TestAffineInput) { LiteMat src(3, 3); LiteMat dst; double M[6] = {1}; EXPECT_FALSE(Affine(src, dst, M, {}, UINT8_C1(0))); EXPECT_FALSE(Affine(src, dst, M, {3}, UINT8_C1(0))); EXPECT_FALSE(Affine(src, dst, M, {0, 0}, UINT8_C1(0))); } TEST_F(MindDataImageProcess, TestAffine) { // The input matrix // 0 0 1 0 0 // 0 0 1 0 0 // 2 2 3 2 2 // 0 0 1 0 0 // 0 0 1 0 0 size_t rows = 5; size_t cols = 5; LiteMat src(rows, cols); for (size_t i = 0; i < rows; i++) { for (size_t j = 0; j < cols; j++) { if (i == 2 && j == 2) { static_cast(src.data_ptr_)[i * cols + j] = 3; } else if (i == 2) { static_cast(src.data_ptr_)[i * cols + j] = 2; } else if (j == 2) { static_cast(src.data_ptr_)[i * cols + j] = 1; } else { static_cast(src.data_ptr_)[i * cols + j] = 0; } } } // Expect output matrix // 0 0 2 0 0 // 0 0 2 0 0 // 1 1 3 1 1 // 0 0 2 0 0 // 0 0 2 0 0 LiteMat expect(rows, cols); for (size_t i = 0; i < rows; i++) { for (size_t j = 0; j < cols; j++) { if (i == 2 && j == 2) { static_cast(expect.data_ptr_)[i * cols + j] = 3; } else if (i == 2) { static_cast(expect.data_ptr_)[i * cols + j] = 1; } else if (j == 2) { static_cast(expect.data_ptr_)[i * cols + j] = 2; } else { static_cast(expect.data_ptr_)[i * cols + j] = 0; } } } double angle = 90.0f; cv::Point2f center(rows / 2, cols / 2); cv::Mat rotate_matrix = cv::getRotationMatrix2D(center, angle, 1.0); double M[6]; for (size_t i = 0; i < 6; i++) { M[i] = rotate_matrix.at(i); } LiteMat dst; EXPECT_TRUE(Affine(src, dst, M, {rows, cols}, UINT8_C1(0))); for (size_t i = 0; i < rows; i++) { for (size_t j = 0; j < cols; j++) { EXPECT_EQ(static_cast(expect.data_ptr_)[i * cols + j].c1, static_cast(dst.data_ptr_)[i * cols + j].c1); } } } TEST_F(MindDataImageProcess, TestSubtractUint8) { const size_t cols = 4; // Test uint8 LiteMat src1_uint8(1, cols); LiteMat src2_uint8(1, cols); LiteMat expect_uint8(1, cols); for (size_t i = 0; i < cols; i++) { static_cast(src1_uint8.data_ptr_)[i] = 3; static_cast(src2_uint8.data_ptr_)[i] = 2; static_cast(expect_uint8.data_ptr_)[i] = 1; } LiteMat dst_uint8; EXPECT_TRUE(Subtract(src1_uint8, src2_uint8, &dst_uint8)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_uint8.data_ptr_)[i].c1, static_cast(dst_uint8.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestSubtractInt8) { const size_t cols = 4; // Test int8 LiteMat src1_int8(1, cols, LDataType(LDataType::INT8)); LiteMat src2_int8(1, cols, LDataType(LDataType::INT8)); LiteMat expect_int8(1, cols, LDataType(LDataType::INT8)); for (size_t i = 0; i < cols; i++) { static_cast(src1_int8.data_ptr_)[i] = 2; static_cast(src2_int8.data_ptr_)[i] = 3; static_cast(expect_int8.data_ptr_)[i] = -1; } LiteMat dst_int8; EXPECT_TRUE(Subtract(src1_int8, src2_int8, &dst_int8)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_int8.data_ptr_)[i].c1, static_cast(dst_int8.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestSubtractUInt16) { const size_t cols = 4; // Test uint16 LiteMat src1_uint16(1, cols, LDataType(LDataType::UINT16)); LiteMat src2_uint16(1, cols, LDataType(LDataType::UINT16)); LiteMat expect_uint16(1, cols, LDataType(LDataType::UINT16)); for (size_t i = 0; i < cols; i++) { static_cast(src1_uint16.data_ptr_)[i] = 2; static_cast(src2_uint16.data_ptr_)[i] = 3; static_cast(expect_uint16.data_ptr_)[i] = 0; } LiteMat dst_uint16; EXPECT_TRUE(Subtract(src1_uint16, src2_uint16, &dst_uint16)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_uint16.data_ptr_)[i].c1, static_cast(dst_uint16.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestSubtractInt16) { const size_t cols = 4; // Test int16 LiteMat src1_int16(1, cols, LDataType(LDataType::INT16)); LiteMat src2_int16(1, cols, LDataType(LDataType::INT16)); LiteMat expect_int16(1, cols, LDataType(LDataType::INT16)); for (size_t i = 0; i < cols; i++) { static_cast(src1_int16.data_ptr_)[i] = 2; static_cast(src2_int16.data_ptr_)[i] = 3; static_cast(expect_int16.data_ptr_)[i] = -1; } LiteMat dst_int16; EXPECT_TRUE(Subtract(src1_int16, src2_int16, &dst_int16)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_int16.data_ptr_)[i].c1, static_cast(dst_int16.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestSubtractUInt32) { const size_t cols = 4; // Test uint16 LiteMat src1_uint32(1, cols, LDataType(LDataType::UINT32)); LiteMat src2_uint32(1, cols, LDataType(LDataType::UINT32)); LiteMat expect_uint32(1, cols, LDataType(LDataType::UINT32)); for (size_t i = 0; i < cols; i++) { static_cast(src1_uint32.data_ptr_)[i] = 2; static_cast(src2_uint32.data_ptr_)[i] = 3; static_cast(expect_uint32.data_ptr_)[i] = 0; } LiteMat dst_uint32; EXPECT_TRUE(Subtract(src1_uint32, src2_uint32, &dst_uint32)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_uint32.data_ptr_)[i].c1, static_cast(dst_uint32.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestSubtractInt32) { const size_t cols = 4; // Test int32 LiteMat src1_int32(1, cols, LDataType(LDataType::INT32)); LiteMat src2_int32(1, cols, LDataType(LDataType::INT32)); LiteMat expect_int32(1, cols, LDataType(LDataType::INT32)); for (size_t i = 0; i < cols; i++) { static_cast(src1_int32.data_ptr_)[i] = 2; static_cast(src2_int32.data_ptr_)[i] = 4; static_cast(expect_int32.data_ptr_)[i] = -2; } LiteMat dst_int32; EXPECT_TRUE(Subtract(src1_int32, src2_int32, &dst_int32)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_int32.data_ptr_)[i].c1, static_cast(dst_int32.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestSubtractFloat) { const size_t cols = 4; // Test float LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32)); LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32)); LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32)); for (size_t i = 0; i < cols; i++) { static_cast(src1_float.data_ptr_)[i] = 3.4; static_cast(src2_float.data_ptr_)[i] = 5.7; static_cast(expect_float.data_ptr_)[i] = -2.3; } LiteMat dst_float; EXPECT_TRUE(Subtract(src1_float, src2_float, &dst_float)); for (size_t i = 0; i < cols; i++) { EXPECT_FLOAT_EQ(static_cast(expect_float.data_ptr_)[i].c1, static_cast(dst_float.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestDivideUint8) { const size_t cols = 4; // Test uint8 LiteMat src1_uint8(1, cols); LiteMat src2_uint8(1, cols); LiteMat expect_uint8(1, cols); for (size_t i = 0; i < cols; i++) { static_cast(src1_uint8.data_ptr_)[i] = 8; static_cast(src2_uint8.data_ptr_)[i] = 4; static_cast(expect_uint8.data_ptr_)[i] = 2; } LiteMat dst_uint8; EXPECT_TRUE(Divide(src1_uint8, src2_uint8, &dst_uint8)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_uint8.data_ptr_)[i].c1, static_cast(dst_uint8.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestDivideInt8) { const size_t cols = 4; // Test int8 LiteMat src1_int8(1, cols, LDataType(LDataType::INT8)); LiteMat src2_int8(1, cols, LDataType(LDataType::INT8)); LiteMat expect_int8(1, cols, LDataType(LDataType::INT8)); for (size_t i = 0; i < cols; i++) { static_cast(src1_int8.data_ptr_)[i] = 8; static_cast(src2_int8.data_ptr_)[i] = -4; static_cast(expect_int8.data_ptr_)[i] = -2; } LiteMat dst_int8; EXPECT_TRUE(Divide(src1_int8, src2_int8, &dst_int8)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_int8.data_ptr_)[i].c1, static_cast(dst_int8.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestDivideUInt16) { const size_t cols = 4; // Test uint16 LiteMat src1_uint16(1, cols, LDataType(LDataType::UINT16)); LiteMat src2_uint16(1, cols, LDataType(LDataType::UINT16)); LiteMat expect_uint16(1, cols, LDataType(LDataType::UINT16)); for (size_t i = 0; i < cols; i++) { static_cast(src1_uint16.data_ptr_)[i] = 40000; static_cast(src2_uint16.data_ptr_)[i] = 20000; static_cast(expect_uint16.data_ptr_)[i] = 2; } LiteMat dst_uint16; EXPECT_TRUE(Divide(src1_uint16, src2_uint16, &dst_uint16)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_uint16.data_ptr_)[i].c1, static_cast(dst_uint16.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestDivideInt16) { const size_t cols = 4; // Test int16 LiteMat src1_int16(1, cols, LDataType(LDataType::INT16)); LiteMat src2_int16(1, cols, LDataType(LDataType::INT16)); LiteMat expect_int16(1, cols, LDataType(LDataType::INT16)); for (size_t i = 0; i < cols; i++) { static_cast(src1_int16.data_ptr_)[i] = 30000; static_cast(src2_int16.data_ptr_)[i] = -3; static_cast(expect_int16.data_ptr_)[i] = -10000; } LiteMat dst_int16; EXPECT_TRUE(Divide(src1_int16, src2_int16, &dst_int16)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_int16.data_ptr_)[i].c1, static_cast(dst_int16.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestDivideUInt32) { const size_t cols = 4; // Test uint16 LiteMat src1_uint32(1, cols, LDataType(LDataType::UINT32)); LiteMat src2_uint32(1, cols, LDataType(LDataType::UINT32)); LiteMat expect_uint32(1, cols, LDataType(LDataType::UINT32)); for (size_t i = 0; i < cols; i++) { static_cast(src1_uint32.data_ptr_)[i] = 4000000000; static_cast(src2_uint32.data_ptr_)[i] = 4; static_cast(expect_uint32.data_ptr_)[i] = 1000000000; } LiteMat dst_uint32; EXPECT_TRUE(Divide(src1_uint32, src2_uint32, &dst_uint32)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_uint32.data_ptr_)[i].c1, static_cast(dst_uint32.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestDivideInt32) { const size_t cols = 4; // Test int32 LiteMat src1_int32(1, cols, LDataType(LDataType::INT32)); LiteMat src2_int32(1, cols, LDataType(LDataType::INT32)); LiteMat expect_int32(1, cols, LDataType(LDataType::INT32)); for (size_t i = 0; i < cols; i++) { static_cast(src1_int32.data_ptr_)[i] = 2000000000; static_cast(src2_int32.data_ptr_)[i] = -2; static_cast(expect_int32.data_ptr_)[i] = -1000000000; } LiteMat dst_int32; EXPECT_TRUE(Divide(src1_int32, src2_int32, &dst_int32)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_int32.data_ptr_)[i].c1, static_cast(dst_int32.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestDivideFloat) { const size_t cols = 4; // Test float LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32)); LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32)); LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32)); for (size_t i = 0; i < cols; i++) { static_cast(src1_float.data_ptr_)[i] = 12.34f; static_cast(src2_float.data_ptr_)[i] = -2.0f; static_cast(expect_float.data_ptr_)[i] = -6.17f; } LiteMat dst_float; EXPECT_TRUE(Divide(src1_float, src2_float, &dst_float)); for (size_t i = 0; i < cols; i++) { EXPECT_FLOAT_EQ(static_cast(expect_float.data_ptr_)[i].c1, static_cast(dst_float.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestMultiplyUint8) { const size_t cols = 4; // Test uint8 LiteMat src1_uint8(1, cols); LiteMat src2_uint8(1, cols); LiteMat expect_uint8(1, cols); for (size_t i = 0; i < cols; i++) { static_cast(src1_uint8.data_ptr_)[i] = 8; static_cast(src2_uint8.data_ptr_)[i] = 4; static_cast(expect_uint8.data_ptr_)[i] = 32; } LiteMat dst_uint8; EXPECT_TRUE(Multiply(src1_uint8, src2_uint8, &dst_uint8)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_uint8.data_ptr_)[i].c1, static_cast(dst_uint8.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestMultiplyUInt16) { const size_t cols = 4; // Test int16 LiteMat src1_int16(1, cols, LDataType(LDataType::UINT16)); LiteMat src2_int16(1, cols, LDataType(LDataType::UINT16)); LiteMat expect_int16(1, cols, LDataType(LDataType::UINT16)); for (size_t i = 0; i < cols; i++) { static_cast(src1_int16.data_ptr_)[i] = 60000; static_cast(src2_int16.data_ptr_)[i] = 2; static_cast(expect_int16.data_ptr_)[i] = 65535; } LiteMat dst_int16; EXPECT_TRUE(Multiply(src1_int16, src2_int16, &dst_int16)); for (size_t i = 0; i < cols; i++) { EXPECT_EQ(static_cast(expect_int16.data_ptr_)[i].c1, static_cast(dst_int16.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestMultiplyFloat) { const size_t cols = 4; // Test float LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32)); LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32)); LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32)); for (size_t i = 0; i < cols; i++) { static_cast(src1_float.data_ptr_)[i] = 30.0f; static_cast(src2_float.data_ptr_)[i] = -2.0f; static_cast(expect_float.data_ptr_)[i] = -60.0f; } LiteMat dst_float; EXPECT_TRUE(Multiply(src1_float, src2_float, &dst_float)); for (size_t i = 0; i < cols; i++) { EXPECT_FLOAT_EQ(static_cast(expect_float.data_ptr_)[i].c1, static_cast(dst_float.data_ptr_)[i].c1); } } TEST_F(MindDataImageProcess, TestExtractChannel) { LiteMat lite_single; LiteMat lite_mat = LiteMat(1, 4, 3, LDataType::UINT16); EXPECT_FALSE(ExtractChannel(lite_mat, lite_single, 0)); EXPECT_TRUE(lite_single.IsEmpty()); } TEST_F(MindDataImageProcess, testROI3C) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat cv_roi = cv::Mat(src_image, cv::Rect(500, 500, 3000, 1500)); cv::imwrite("./cv_roi.jpg", cv_roi); bool ret = false; LiteMat lite_mat_bgr; ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr); EXPECT_TRUE(ret); LiteMat lite_roi; ret = lite_mat_bgr.GetROI(500, 500, 3000, 1500, lite_roi); EXPECT_TRUE(ret); LiteMat lite_roi_save(3000, 1500, lite_roi.channel_, LDataType::UINT8); for (size_t i = 0; i < lite_roi.height_; i++) { const unsigned char *ptr = lite_roi.ptr(i); size_t image_size = lite_roi.width_ * lite_roi.channel_ * sizeof(unsigned char); unsigned char *dst_ptr = (unsigned char *)lite_roi_save.data_ptr_ + image_size * i; (void)memcpy(dst_ptr, ptr, image_size); } cv::Mat dst_imageR(lite_roi_save.height_, lite_roi_save.width_, CV_8UC3, lite_roi_save.data_ptr_); cv::imwrite("./lite_roi.jpg", dst_imageR); } TEST_F(MindDataImageProcess, testROI3CFalse) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat cv_roi = cv::Mat(src_image, cv::Rect(500, 500, 3000, 1500)); cv::imwrite("./cv_roi.jpg", cv_roi); bool ret = false; LiteMat lite_mat_bgr; ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr); EXPECT_TRUE(ret); LiteMat lite_roi; ret = lite_mat_bgr.GetROI(500, 500, 1200, -100, lite_roi); EXPECT_FALSE(ret); } TEST_F(MindDataImageProcess, testROI1C) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat gray_image; cv::cvtColor(src_image, gray_image, CV_BGR2GRAY); cv::Mat cv_roi_gray = cv::Mat(gray_image, cv::Rect(500, 500, 3000, 1500)); cv::imwrite("./cv_roi_gray.jpg", cv_roi_gray); cv::Mat rgba_mat; cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA); bool ret = false; LiteMat lite_mat_gray; ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray); EXPECT_TRUE(ret); LiteMat lite_roi_gray; ret = lite_mat_gray.GetROI(500, 500, 3000, 1500, lite_roi_gray); EXPECT_TRUE(ret); LiteMat lite_roi_gray_save(3000, 1500, lite_roi_gray.channel_, LDataType::UINT8); for (size_t i = 0; i < lite_roi_gray.height_; i++) { const unsigned char *ptr = lite_roi_gray.ptr(i); size_t image_size = lite_roi_gray.width_ * lite_roi_gray.channel_ * sizeof(unsigned char); unsigned char *dst_ptr = (unsigned char *)lite_roi_gray_save.data_ptr_ + image_size * i; (void)memcpy(dst_ptr, ptr, image_size); } cv::Mat dst_imageR(lite_roi_gray_save.height_, lite_roi_gray_save.width_, CV_8UC1, lite_roi_gray_save.data_ptr_); cv::imwrite("./lite_roi.jpg", dst_imageR); } // warp TEST_F(MindDataImageProcess, testWarpAffineBGR) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Point2f srcTri[3]; cv::Point2f dstTri[3]; srcTri[0] = cv::Point2f(0, 0); srcTri[1] = cv::Point2f(src_image.cols - 1, 0); srcTri[2] = cv::Point2f(0, src_image.rows - 1); dstTri[0] = cv::Point2f(src_image.cols * 0.0, src_image.rows * 0.33); dstTri[1] = cv::Point2f(src_image.cols * 0.85, src_image.rows * 0.25); dstTri[2] = cv::Point2f(src_image.cols * 0.15, src_image.rows * 0.7); cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri); ; cv::Mat warp_dstImage; cv::warpAffine(src_image, warp_dstImage, warp_mat, warp_dstImage.size()); cv::imwrite("./warpAffine_cv_bgr.png", warp_dstImage); bool ret = false; LiteMat lite_mat_bgr; ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr); EXPECT_TRUE(ret); double *mat_ptr = warp_mat.ptr(0); LiteMat lite_M(3, 2, 1, mat_ptr, LDataType::DOUBLE); LiteMat lite_warp; std::vector borderValues; borderValues.push_back(0); borderValues.push_back(0); borderValues.push_back(0); ret = WarpAffineBilinear(lite_mat_bgr, lite_warp, lite_M, lite_mat_bgr.width_, lite_mat_bgr.height_, PADD_BORDER_CONSTANT, borderValues); EXPECT_TRUE(ret); cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC3, lite_warp.data_ptr_); cv::imwrite("./warpAffine_lite_bgr.png", dst_imageR); } TEST_F(MindDataImageProcess, testWarpAffineBGRScale) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Point2f srcTri[3]; cv::Point2f dstTri[3]; srcTri[0] = cv::Point2f(10, 20); srcTri[1] = cv::Point2f(src_image.cols - 1 - 100, 0); srcTri[2] = cv::Point2f(0, src_image.rows - 1 - 300); dstTri[0] = cv::Point2f(src_image.cols * 0.22, src_image.rows * 0.33); dstTri[1] = cv::Point2f(src_image.cols * 0.87, src_image.rows * 0.75); dstTri[2] = cv::Point2f(src_image.cols * 0.35, src_image.rows * 0.37); cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri); ; cv::Mat warp_dstImage; cv::warpAffine(src_image, warp_dstImage, warp_mat, warp_dstImage.size()); cv::imwrite("./warpAffine_cv_bgr_scale.png", warp_dstImage); bool ret = false; LiteMat lite_mat_bgr; ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr); EXPECT_TRUE(ret); double *mat_ptr = warp_mat.ptr(0); LiteMat lite_M(3, 2, 1, mat_ptr, LDataType::DOUBLE); LiteMat lite_warp; std::vector borderValues; borderValues.push_back(0); borderValues.push_back(0); borderValues.push_back(0); ret = WarpAffineBilinear(lite_mat_bgr, lite_warp, lite_M, lite_mat_bgr.width_, lite_mat_bgr.height_, PADD_BORDER_CONSTANT, borderValues); EXPECT_TRUE(ret); cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC3, lite_warp.data_ptr_); cv::imwrite("./warpAffine_lite_bgr_scale.png", dst_imageR); } TEST_F(MindDataImageProcess, testWarpAffineBGRResize) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Point2f srcTri[3]; cv::Point2f dstTri[3]; srcTri[0] = cv::Point2f(10, 20); srcTri[1] = cv::Point2f(src_image.cols - 1 - 100, 0); srcTri[2] = cv::Point2f(0, src_image.rows - 1 - 300); dstTri[0] = cv::Point2f(src_image.cols * 0.22, src_image.rows * 0.33); dstTri[1] = cv::Point2f(src_image.cols * 0.87, src_image.rows * 0.75); dstTri[2] = cv::Point2f(src_image.cols * 0.35, src_image.rows * 0.37); cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri); ; cv::Mat warp_dstImage; cv::warpAffine(src_image, warp_dstImage, warp_mat, cv::Size(src_image.cols + 200, src_image.rows - 300)); cv::imwrite("./warpAffine_cv_bgr_resize.png", warp_dstImage); bool ret = false; LiteMat lite_mat_bgr; ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr); EXPECT_TRUE(ret); double *mat_ptr = warp_mat.ptr(0); LiteMat lite_M(3, 2, 1, mat_ptr, LDataType::DOUBLE); LiteMat lite_warp; std::vector borderValues; borderValues.push_back(0); borderValues.push_back(0); borderValues.push_back(0); ret = WarpAffineBilinear(lite_mat_bgr, lite_warp, lite_M, lite_mat_bgr.width_ + 200, lite_mat_bgr.height_ - 300, PADD_BORDER_CONSTANT, borderValues); EXPECT_TRUE(ret); cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC3, lite_warp.data_ptr_); cv::imwrite("./warpAffine_lite_bgr_resize.png", dst_imageR); } TEST_F(MindDataImageProcess, testWarpAffineGray) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat gray_image; cv::cvtColor(src_image, gray_image, CV_BGR2GRAY); cv::Point2f srcTri[3]; cv::Point2f dstTri[3]; srcTri[0] = cv::Point2f(0, 0); srcTri[1] = cv::Point2f(src_image.cols - 1, 0); srcTri[2] = cv::Point2f(0, src_image.rows - 1); dstTri[0] = cv::Point2f(src_image.cols * 0.0, src_image.rows * 0.33); dstTri[1] = cv::Point2f(src_image.cols * 0.85, src_image.rows * 0.25); dstTri[2] = cv::Point2f(src_image.cols * 0.15, src_image.rows * 0.7); cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri); ; cv::Mat warp_gray_dstImage; cv::warpAffine(gray_image, warp_gray_dstImage, warp_mat, cv::Size(src_image.cols + 200, src_image.rows - 300)); cv::imwrite("./warpAffine_cv_gray.png", warp_gray_dstImage); cv::Mat rgba_mat; cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA); bool ret = false; LiteMat lite_mat_gray; ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray); EXPECT_TRUE(ret); double *mat_ptr = warp_mat.ptr(0); LiteMat lite_M(3, 2, 1, mat_ptr, LDataType::DOUBLE); LiteMat lite_warp; std::vector borderValues; borderValues.push_back(0); ret = WarpAffineBilinear(lite_mat_gray, lite_warp, lite_M, lite_mat_gray.width_ + 200, lite_mat_gray.height_ - 300, PADD_BORDER_CONSTANT, borderValues); EXPECT_TRUE(ret); cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC1, lite_warp.data_ptr_); cv::imwrite("./warpAffine_lite_gray.png", dst_imageR); } TEST_F(MindDataImageProcess, testWarpPerspectiveBGRResize) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Point2f srcQuad[4], dstQuad[4]; srcQuad[0].x = 0; srcQuad[0].y = 0; srcQuad[1].x = src_image.cols - 1.; srcQuad[1].y = 0; srcQuad[2].x = 0; srcQuad[2].y = src_image.rows - 1; srcQuad[3].x = src_image.cols - 1; srcQuad[3].y = src_image.rows - 1; dstQuad[0].x = src_image.cols * 0.05; dstQuad[0].y = src_image.rows * 0.33; dstQuad[1].x = src_image.cols * 0.9; dstQuad[1].y = src_image.rows * 0.25; dstQuad[2].x = src_image.cols * 0.2; dstQuad[2].y = src_image.rows * 0.7; dstQuad[3].x = src_image.cols * 0.8; dstQuad[3].y = src_image.rows * 0.9; cv::Mat ptran = cv::getPerspectiveTransform(srcQuad, dstQuad, cv::DECOMP_SVD); cv::Mat warp_dstImage; cv::warpPerspective(src_image, warp_dstImage, ptran, cv::Size(src_image.cols + 200, src_image.rows - 300)); cv::imwrite("./warpPerspective_cv_bgr.png", warp_dstImage); bool ret = false; LiteMat lite_mat_bgr; ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr); EXPECT_TRUE(ret); double *mat_ptr = ptran.ptr(0); LiteMat lite_M(3, 3, 1, mat_ptr, LDataType::DOUBLE); LiteMat lite_warp; std::vector borderValues; borderValues.push_back(0); borderValues.push_back(0); borderValues.push_back(0); ret = WarpPerspectiveBilinear(lite_mat_bgr, lite_warp, lite_M, lite_mat_bgr.width_ + 200, lite_mat_bgr.height_ - 300, PADD_BORDER_CONSTANT, borderValues); EXPECT_TRUE(ret); cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC3, lite_warp.data_ptr_); cv::imwrite("./warpPerspective_lite_bgr.png", dst_imageR); } TEST_F(MindDataImageProcess, testWarpPerspectiveGrayResize) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat gray_image; cv::cvtColor(src_image, gray_image, CV_BGR2GRAY); cv::Point2f srcQuad[4], dstQuad[4]; srcQuad[0].x = 0; srcQuad[0].y = 0; srcQuad[1].x = src_image.cols - 1.; srcQuad[1].y = 0; srcQuad[2].x = 0; srcQuad[2].y = src_image.rows - 1; srcQuad[3].x = src_image.cols - 1; srcQuad[3].y = src_image.rows - 1; dstQuad[0].x = src_image.cols * 0.05; dstQuad[0].y = src_image.rows * 0.33; dstQuad[1].x = src_image.cols * 0.9; dstQuad[1].y = src_image.rows * 0.25; dstQuad[2].x = src_image.cols * 0.2; dstQuad[2].y = src_image.rows * 0.7; dstQuad[3].x = src_image.cols * 0.8; dstQuad[3].y = src_image.rows * 0.9; cv::Mat ptran = cv::getPerspectiveTransform(srcQuad, dstQuad, cv::DECOMP_SVD); cv::Mat warp_dstImage; cv::warpPerspective(gray_image, warp_dstImage, ptran, cv::Size(gray_image.cols + 200, gray_image.rows - 300)); cv::imwrite("./warpPerspective_cv_gray.png", warp_dstImage); cv::Mat rgba_mat; cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA); bool ret = false; LiteMat lite_mat_gray; ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray); EXPECT_TRUE(ret); double *mat_ptr = ptran.ptr(0); LiteMat lite_M(3, 3, 1, mat_ptr, LDataType::DOUBLE); LiteMat lite_warp; std::vector borderValues; borderValues.push_back(0); ret = WarpPerspectiveBilinear(lite_mat_gray, lite_warp, lite_M, lite_mat_gray.width_ + 200, lite_mat_gray.height_ - 300, PADD_BORDER_CONSTANT, borderValues); EXPECT_TRUE(ret); cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC1, lite_warp.data_ptr_); cv::imwrite("./warpPerspective_lite_gray.png", dst_imageR); } TEST_F(MindDataImageProcess, testGetRotationMatrix2D) { std::vector> expect_matrix = {{0.250000, 0.433013, -0.116025}, {-0.433013, 0.250000, 1.933013}}; double angle = 60.0; double scale = 0.5; LiteMat M; bool ret = false; ret = GetRotationMatrix2D(1.0f, 2.0f, angle, scale, M); EXPECT_TRUE(ret); AccuracyComparison(expect_matrix, M); } TEST_F(MindDataImageProcess, testGetPerspectiveTransform) { std::vector> expect_matrix = { {1.272113, 3.665216, -788.484287}, {-0.394146, 3.228247, -134.009780}, {-0.001460, 0.006414, 1}}; std::vector src = {Point(165, 270), Point(835, 270), Point(360, 125), Point(615, 125)}; std::vector dst = {Point(165, 270), Point(835, 270), Point(100, 100), Point(500, 30)}; LiteMat M; bool ret = false; ret = GetPerspectiveTransform(src, dst, M); EXPECT_TRUE(ret); AccuracyComparison(expect_matrix, M); } TEST_F(MindDataImageProcess, testGetPerspectiveTransformFail) { std::vector src = {Point(165, 270), Point(835, 270), Point(360, 125), Point(615, 125)}; std::vector dst = {Point(100, 100), Point(500, 30)}; LiteMat M; bool ret = GetPerspectiveTransform(src, dst, M); EXPECT_FALSE(ret); std::vector src1 = {Point(360, 125), Point(615, 125)}; std::vector dst2 = {Point(165, 270), Point(835, 270), Point(100, 100), Point(500, 30)}; LiteMat M1; bool ret1 = GetPerspectiveTransform(src, dst, M1); EXPECT_FALSE(ret1); } TEST_F(MindDataImageProcess, testGetAffineTransform) { std::vector> expect_matrix = {{0.400000, 0.066667, 16.666667}, {0.000000, 0.333333, 23.333333}}; std::vector src = {Point(50, 50), Point(200, 50), Point(50, 200)}; std::vector dst = {Point(40, 40), Point(100, 40), Point(50, 90)}; LiteMat M; bool ret = false; ret = GetAffineTransform(src, dst, M); EXPECT_TRUE(ret); AccuracyComparison(expect_matrix, M); } TEST_F(MindDataImageProcess, testGetAffineTransformFail) { std::vector src = {Point(50, 50), Point(200, 50)}; std::vector dst = {Point(40, 40), Point(100, 40), Point(50, 90)}; LiteMat M; bool ret = GetAffineTransform(src, dst, M); EXPECT_FALSE(ret); std::vector src1 = {Point(50, 50), Point(200, 50), Point(50, 200)}; std::vector dst1 = {Point(40, 40), Point(100, 40)}; LiteMat M1; bool ret1 = GetAffineTransform(src1, dst1, M1); EXPECT_FALSE(ret1); } TEST_F(MindDataImageProcess, TestConv2D8U) { LiteMat lite_mat_src; lite_mat_src.Init(3, 3, 1, LDataType::UINT8); uint8_t *src_ptr = lite_mat_src; for (int i = 0; i < 9; i++) { src_ptr[i] = i % 3; } LiteMat kernel; kernel.Init(3, 3, 1, LDataType::FLOAT32); float *kernel_ptr = kernel; for (int i = 0; i < 9; i++) { kernel_ptr[i] = i % 2; } LiteMat lite_mat_dst; bool ret = Conv2D(lite_mat_src, kernel, lite_mat_dst, LDataType::UINT8); ASSERT_TRUE(ret == true); std::vector expected_result = {2, 4, 6, 2, 4, 6, 2, 4, 6}; size_t total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_; float distance = 0.0f; for (size_t i = 0; i < total_size; i++) { distance += pow(((uint8_t *)lite_mat_dst)[i] - expected_result[i], 2); } distance = sqrt(distance / total_size); EXPECT_EQ(distance, 0.0f); } TEST_F(MindDataImageProcess, TestConv2D32F) { LiteMat lite_mat_src; lite_mat_src.Init(2, 2, 1, LDataType::FLOAT32); float *src_ptr = lite_mat_src; for (int i = 0; i < 4; i++) { src_ptr[i] = static_cast(i) / 2; } LiteMat kernel; kernel.Init(2, 2, 1, LDataType::FLOAT32); float *kernel_ptr = kernel; for (int i = 0; i < 4; i++) { kernel_ptr[i] = static_cast(i); } LiteMat lite_mat_dst; bool ret = Conv2D(lite_mat_src, kernel, lite_mat_dst, LDataType::FLOAT32); ASSERT_TRUE(ret == true); std::vector expected_result = {2.f, 3.f, 6.f, 7.f}; size_t total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_; float distance = 0.0f; for (size_t i = 0; i < total_size; i++) { distance += pow(((float *)lite_mat_dst)[i] - expected_result[i], 2); } distance = sqrt(distance / total_size); EXPECT_EQ(distance, 0.0f); } TEST_F(MindDataImageProcess, TestGaussianBlurSize35) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat dst_image; cv::GaussianBlur(src_image, dst_image, cv::Size(3, 5), 3, 3); cv::Mat rgba_mat; cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA); LiteMat lite_mat_bgr; bool ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); LiteMat lite_mat_dst; ret = GaussianBlur(lite_mat_bgr, lite_mat_dst, {3, 5}, 3, 3); ASSERT_TRUE(ret == true); size_t total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_; double distance = 0.0f; for (size_t i = 0; i < total_size; i++) { distance += pow((uint8_t)dst_image.data[i] - ((uint8_t *)lite_mat_dst)[i], 2); } distance = sqrt(distance / total_size); EXPECT_LE(distance, 1.0f); } TEST_F(MindDataImageProcess, TestGaussianBlurSize13) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat dst_image; cv::GaussianBlur(src_image, dst_image, cv::Size(1, 3), 3); cv::Mat rgba_mat; cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA); LiteMat lite_mat_bgr; bool ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); LiteMat lite_mat_dst; ret = GaussianBlur(lite_mat_bgr, lite_mat_dst, {1, 3}, 3); ASSERT_TRUE(ret == true); size_t total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_; double distance = 0.0f; for (size_t i = 0; i < total_size; i++) { distance += pow((uint8_t)dst_image.data[i] - ((uint8_t *)lite_mat_dst)[i], 2); } distance = sqrt(distance / total_size); EXPECT_LE(distance, 1.0f); } TEST_F(MindDataImageProcess, TestGaussianBlurInvalidParams) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat rgba_mat; cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA); LiteMat lite_mat_bgr; bool ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); LiteMat lite_mat_dst; // even size ret = GaussianBlur(lite_mat_bgr, lite_mat_dst, {3, 4}, 3); ASSERT_TRUE(ret == false); // ksize.size() != 2 ret = GaussianBlur(lite_mat_bgr, lite_mat_dst, {3, 4, 5}, 3); ASSERT_TRUE(ret == false); // size less or equal to 0 ret = GaussianBlur(lite_mat_bgr, lite_mat_dst, {0, 3}, 3); ASSERT_TRUE(ret == false); // sigmaX less or equal to 0 ret = GaussianBlur(lite_mat_bgr, lite_mat_dst, {3, 3}, 0); ASSERT_TRUE(ret == false); } TEST_F(MindDataImageProcess, TestCannySize3) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat gray_image; cv::cvtColor(src_image, gray_image, CV_BGR2GRAY); cv::Mat dst_image; cv::Canny(gray_image, dst_image, 100, 200, 3); cv::Mat rgba_mat; cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA); bool ret = false; LiteMat lite_mat_gray; ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray); ASSERT_TRUE(ret == true); LiteMat lite_mat_dst; ret = Canny(lite_mat_gray, lite_mat_dst, 100, 200, 3); ASSERT_TRUE(ret == true); int total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_; double distance = 0.0f; for (int i = 0; i < total_size; i++) { distance += pow((uint8_t)dst_image.data[i] - ((uint8_t *)lite_mat_dst)[i], 2); } distance = sqrt(distance / total_size); EXPECT_EQ(distance, 0.0f); } TEST_F(MindDataImageProcess, TestCannySize5) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat gray_image; cv::cvtColor(src_image, gray_image, CV_BGR2GRAY); cv::Mat dst_image; cv::Canny(gray_image, dst_image, 200, 300, 5); cv::Mat rgba_mat; cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA); bool ret = false; LiteMat lite_mat_gray; ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray); ASSERT_TRUE(ret == true); LiteMat lite_mat_dst; ret = Canny(lite_mat_gray, lite_mat_dst, 200, 300, 5); ASSERT_TRUE(ret == true); int total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_; double distance = 0.0f; for (int i = 0; i < total_size; i++) { distance += pow((uint8_t)dst_image.data[i] - ((uint8_t *)lite_mat_dst)[i], 2); } distance = sqrt(distance / total_size); EXPECT_EQ(distance, 0.0f); } TEST_F(MindDataImageProcess, TestCannySize7) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat gray_image; cv::cvtColor(src_image, gray_image, CV_BGR2GRAY); cv::Mat dst_image; cv::Canny(gray_image, dst_image, 110, 220, 7); cv::Mat rgba_mat; cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA); bool ret = false; LiteMat lite_mat_gray; ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray); ASSERT_TRUE(ret == true); LiteMat lite_mat_dst; ret = Canny(lite_mat_gray, lite_mat_dst, 110, 220, 7); ASSERT_TRUE(ret == true); int total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_; double distance = 0.0f; for (int i = 0; i < total_size; i++) { distance += pow((uint8_t)dst_image.data[i] - ((uint8_t *)lite_mat_dst)[i], 2); } distance = sqrt(distance / total_size); EXPECT_EQ(distance, 0.0f); } TEST_F(MindDataImageProcess, TestCannyL2) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat gray_image; cv::cvtColor(src_image, gray_image, CV_BGR2GRAY); cv::Mat dst_image; cv::Canny(gray_image, dst_image, 50, 150, 3, true); cv::Mat rgba_mat; cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA); bool ret = false; LiteMat lite_mat_gray; ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray); ASSERT_TRUE(ret == true); LiteMat lite_mat_dst; ret = Canny(lite_mat_gray, lite_mat_dst, 50, 150, 3, true); ASSERT_TRUE(ret == true); int total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_; double distance = 0.0f; for (int i = 0; i < total_size; i++) { distance += pow((uint8_t)dst_image.data[i] - ((uint8_t *)lite_mat_dst)[i], 2); } distance = sqrt(distance / total_size); EXPECT_EQ(distance, 0.0f); } TEST_F(MindDataImageProcess, TestCannyInvalidParams) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat rgba_mat; cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA); bool ret = false; LiteMat lite_mat_bgr; ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); // channel is not 1 LiteMat lite_mat_dst; ret = Canny(lite_mat_bgr, lite_mat_dst, 70, 210, 3); ASSERT_TRUE(ret == false); LiteMat lite_mat_gray; ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray); ASSERT_TRUE(ret == true); // low_thresh less than 0 ret = Canny(lite_mat_gray, lite_mat_dst, -5, 230, 3); ASSERT_TRUE(ret == false); // high_thresh less than low_thresh ret = Canny(lite_mat_gray, lite_mat_dst, 250, 130, 3); ASSERT_TRUE(ret == false); // even size ret = Canny(lite_mat_gray, lite_mat_dst, 60, 180, 4); ASSERT_TRUE(ret == false); // size less than 3 or large than 7 ret = Canny(lite_mat_gray, lite_mat_dst, 10, 190, 9); ASSERT_TRUE(ret == false); } TEST_F(MindDataImageProcess, TestSobel) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat gray_image; cv::cvtColor(src_image, gray_image, CV_BGR2GRAY); cv::Mat sobel_image_x; cv::Mat sobel_image_y; cv::Sobel(gray_image, sobel_image_x, CV_32F, 1, 0, 3, 1, 0, cv::BORDER_REPLICATE); cv::Sobel(gray_image, sobel_image_y, CV_32F, 0, 1, 3, 1, 0, cv::BORDER_REPLICATE); cv::Mat sobel_cv_x, sobel_cv_y; sobel_image_x.convertTo(sobel_cv_x, CV_8UC1); sobel_image_y.convertTo(sobel_cv_y, CV_8UC1); cv::Mat rgba_mat; cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA); bool ret = false; LiteMat lite_mat_gray; ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray); ASSERT_TRUE(ret == true); LiteMat lite_mat_x; LiteMat lite_mat_y; Sobel(lite_mat_gray, lite_mat_x, 1, 0, 3, 1, PaddBorderType::PADD_BORDER_REPLICATE); Sobel(lite_mat_gray, lite_mat_y, 0, 1, 3, 1, PaddBorderType::PADD_BORDER_REPLICATE); ASSERT_TRUE(ret == true); cv::Mat dst_imageX(lite_mat_x.height_, lite_mat_x.width_, CV_32FC1, lite_mat_x.data_ptr_); cv::Mat dst_imageY(lite_mat_y.height_, lite_mat_y.width_, CV_32FC1, lite_mat_y.data_ptr_); cv::Mat sobel_ms_x, sobel_ms_y; dst_imageX.convertTo(sobel_ms_x, CV_8UC1); dst_imageY.convertTo(sobel_ms_y, CV_8UC1); size_t total_size = lite_mat_x.height_ * lite_mat_x.width_ * lite_mat_x.channel_; float distance_x = 0.0f, distance_y = 0.0f; for (int i = 0; i < total_size; i++) { distance_x += pow((uint8_t)sobel_cv_x.data[i] - (uint8_t)sobel_ms_x.data[i], 2); distance_y += pow((uint8_t)sobel_cv_y.data[i] - (uint8_t)sobel_ms_y.data[i], 2); } distance_x = sqrt(distance_x / total_size); distance_y = sqrt(distance_y / total_size); EXPECT_EQ(distance_x, 0.0f); EXPECT_EQ(distance_y, 0.0f); } TEST_F(MindDataImageProcess, TestSobelFlag) { std::string filename = "data/dataset/apple.jpg"; cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat gray_image; cv::cvtColor(src_image, gray_image, CV_BGR2GRAY); cv::Mat sobel_image_x; cv::Sobel(gray_image, sobel_image_x, CV_32F, 3, 1, 5, 1, 0, cv::BORDER_REPLICATE); cv::Mat sobel_cv_x; sobel_image_x.convertTo(sobel_cv_x, CV_8UC1); cv::Mat rgba_mat; cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA); bool ret = false; LiteMat lite_mat_gray; ret = InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray); ASSERT_TRUE(ret == true); LiteMat lite_mat_x; Sobel(lite_mat_gray, lite_mat_x, 3, 1, 5, 1, PaddBorderType::PADD_BORDER_REPLICATE); ASSERT_TRUE(ret == true); cv::Mat dst_imageX(lite_mat_x.height_, lite_mat_x.width_, CV_32FC1, lite_mat_x.data_ptr_); cv::Mat sobel_ms_x; dst_imageX.convertTo(sobel_ms_x, CV_8UC1); size_t total_size = lite_mat_x.height_ * lite_mat_x.width_ * lite_mat_x.channel_; float distance_x = 0.0f; for (int i = 0; i < total_size; i++) { distance_x += pow((uint8_t)sobel_cv_x.data[i] - (uint8_t)sobel_ms_x.data[i], 2); } distance_x = sqrt(distance_x / total_size); EXPECT_EQ(distance_x, 0.0f); } TEST_F(MindDataImageProcess, testConvertRgbToBgr) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat rgb_mat1; cv::cvtColor(image, rgb_mat1, CV_BGR2RGB); LiteMat lite_mat_rgb; lite_mat_rgb.Init(rgb_mat1.cols, rgb_mat1.rows, rgb_mat1.channels(), rgb_mat1.data, LDataType::UINT8); LiteMat lite_mat_bgr; bool ret = ConvertRgbToBgr(lite_mat_rgb, LDataType::UINT8, image.cols, image.rows, lite_mat_bgr); ASSERT_TRUE(ret == true); cv::Mat dst_image(lite_mat_bgr.height_, lite_mat_bgr.width_, CV_8UC1, lite_mat_bgr.data_ptr_); cv::imwrite("./mindspore_image.jpg", dst_image); CompareMat(image, lite_mat_bgr); } TEST_F(MindDataImageProcess, testConvertRgbToBgrFail) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat rgb_mat1; cv::cvtColor(image, rgb_mat1, CV_BGR2RGB); // The width and height of the output image is different from the original image. LiteMat lite_mat_rgb; lite_mat_rgb.Init(rgb_mat1.cols, rgb_mat1.rows, rgb_mat1.channels(), rgb_mat1.data, LDataType::UINT8); LiteMat lite_mat_bgr; bool ret = ConvertRgbToBgr(lite_mat_rgb, LDataType::UINT8, 1000, 1000, lite_mat_bgr); ASSERT_TRUE(ret == false); // The input lite_mat_rgb object is null. LiteMat lite_mat_rgb1; LiteMat lite_mat_bgr1; bool ret1 = ConvertRgbToBgr(lite_mat_rgb1, LDataType::UINT8, image.cols, image.rows, lite_mat_bgr1); ASSERT_TRUE(ret1 == false); } TEST_F(MindDataImageProcess, testConvertRgbToGray) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat rgb_mat; cv::Mat rgb_mat1; cv::cvtColor(image, rgb_mat, CV_BGR2GRAY); cv::imwrite("./opencv_image.jpg", rgb_mat); cv::cvtColor(image, rgb_mat1, CV_BGR2RGB); LiteMat lite_mat_rgb; lite_mat_rgb.Init(rgb_mat1.cols, rgb_mat1.rows, rgb_mat1.channels(), rgb_mat1.data, LDataType::UINT8); LiteMat lite_mat_gray; bool ret = ConvertRgbToGray(lite_mat_rgb, LDataType::UINT8, image.cols, image.rows, lite_mat_gray); ASSERT_TRUE(ret == true); cv::Mat dst_image(lite_mat_gray.height_, lite_mat_gray.width_, CV_8UC1, lite_mat_gray.data_ptr_); cv::imwrite("./mindspore_image.jpg", dst_image); CompareMat(rgb_mat, lite_mat_gray); } TEST_F(MindDataImageProcess, testConvertRgbToGrayFail) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); cv::Mat rgb_mat; cv::Mat rgb_mat1; cv::cvtColor(image, rgb_mat, CV_BGR2GRAY); cv::imwrite("./opencv_image.jpg", rgb_mat); cv::cvtColor(image, rgb_mat1, CV_BGR2RGB); // The width and height of the output image is different from the original image. LiteMat lite_mat_rgb; lite_mat_rgb.Init(rgb_mat1.cols, rgb_mat1.rows, rgb_mat1.channels(), rgb_mat1.data, LDataType::UINT8); LiteMat lite_mat_gray; bool ret = ConvertRgbToGray(lite_mat_rgb, LDataType::UINT8, 1000, 1000, lite_mat_gray); ASSERT_TRUE(ret == false); // The input lite_mat_rgb object is null. LiteMat lite_mat_rgb1; LiteMat lite_mat_gray1; bool ret1 = ConvertRgbToGray(lite_mat_rgb1, LDataType::UINT8, image.cols, image.rows, lite_mat_gray1); ASSERT_TRUE(ret1 == false); // The channel of output image object is not 1. LiteMat lite_mat_rgb2; lite_mat_rgb2.Init(rgb_mat1.cols, rgb_mat1.rows, rgb_mat1.channels(), rgb_mat1.data, LDataType::UINT8); LiteMat lite_mat_gray2; lite_mat_gray2.Init(rgb_mat1.cols, rgb_mat1.rows, rgb_mat1.channels(), rgb_mat1.data, LDataType::UINT8); bool ret2 = ConvertRgbToGray(lite_mat_rgb2, LDataType::UINT8, image.cols, image.rows, lite_mat_gray2); ASSERT_TRUE(ret2 == false); } TEST_F(MindDataImageProcess, testResizePreserveARWithFillerv) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); LiteMat lite_mat_rgb; lite_mat_rgb.Init(image.cols, image.rows, image.channels(), image.data, LDataType::UINT8); LiteMat lite_mat_resize; float ratioShiftWShiftH[3] = {0}; float invM[2][3] = {{0, 0, 0}, {0, 0, 0}}; int h = 1000; int w = 1000; bool ret = ResizePreserveARWithFiller(lite_mat_rgb, lite_mat_resize, h, w, &ratioShiftWShiftH, &invM, 0); ASSERT_TRUE(ret == true); cv::Mat dst_image(lite_mat_resize.height_, lite_mat_resize.width_, CV_32FC3, lite_mat_resize.data_ptr_); cv::imwrite("./mindspore_image.jpg", dst_image); } TEST_F(MindDataImageProcess, testResizePreserveARWithFillervFail) { std::string filename = "data/dataset/apple.jpg"; cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR); // The input lite_mat_rgb object is null. LiteMat lite_mat_rgb; LiteMat lite_mat_resize; float ratioShiftWShiftH[3] = {0}; float invM[2][3] = {{0, 0, 0}, {0, 0, 0}}; int h = 1000; int w = 1000; bool ret = ResizePreserveARWithFiller(lite_mat_rgb, lite_mat_resize, h, w, &ratioShiftWShiftH, &invM, 0); ASSERT_TRUE(ret == false); // The channel of input lite_mat_rgb object is not 3. LiteMat lite_mat_rgb1; lite_mat_rgb1.Init(image.cols, image.rows, 1, image.data, LDataType::UINT8); LiteMat lite_mat_resize1; float ratioShiftWShiftH1[3] = {0}; float invM1[2][3] = {{0, 0, 0}, {0, 0, 0}}; int h1 = 1000; int w1 = 1000; bool ret1 = ResizePreserveARWithFiller(lite_mat_rgb1, lite_mat_resize1, h1, w1, &ratioShiftWShiftH1, &invM1, 0); ASSERT_TRUE(ret1 == false); // The ratioShiftWShiftH2 and invM2 is null. LiteMat lite_mat_rgb2; lite_mat_rgb2.Init(image.cols, image.rows, image.channels(), image.data, LDataType::UINT8); LiteMat lite_mat_resize2; int h2 = 1000; int w2 = 1000; bool ret2 = ResizePreserveARWithFiller(lite_mat_rgb2, lite_mat_resize2, h2, w2, nullptr, nullptr, 0); ASSERT_TRUE(ret2 == false); // The width and height of the output image is less than or equal to 0. LiteMat lite_mat_rgb3; lite_mat_rgb3.Init(image.cols, image.rows, image.channels(), image.data, LDataType::UINT8); LiteMat lite_mat_resize3; float ratioShiftWShiftH3[3] = {0}; float invM3[2][3] = {{0, 0, 0}, {0, 0, 0}}; int h3 = -1000; int w3 = 1000; bool ret3 = ResizePreserveARWithFiller(lite_mat_rgb3, lite_mat_resize3, h3, w3, &ratioShiftWShiftH3, &invM3, 0); ASSERT_TRUE(ret3 == false); }