# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Test Interpolate """ import pytest import mindspore.nn as nn import mindspore.common.dtype as mstype from mindspore import Tensor from mindspore import context context.set_context(mode=context.GRAPH_MODE) def test_resizebilinear(): class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.value = Tensor([[[[1, 2, 3, 4], [5, 6, 7, 8]]]], mstype.float32) def construct(self): interpolate = nn.ResizeBilinear() return interpolate(self.value, size=(5, 5)) net = Net() net() def test_resizebilinear_1(): class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.value = Tensor([[[[1, 2, 3, 4], [5, 6, 7, 8]]]], mstype.float32) def construct(self): interpolate = nn.ResizeBilinear() return interpolate(self.value, scale_factor=2) net = Net() net() def test_resizebilinear_parameter(): class Net(nn.Cell): def __init__(self): super(Net, self).__init__() def construct(self, x): interpolate = nn.ResizeBilinear() return interpolate(x, size=(5, 5)) net = Net() net(Tensor([[[[1, 2, 3, 4], [5, 6, 7, 8]]]], mstype.float32)) def test_resizebilinear_parameter_1(): class Net(nn.Cell): def __init__(self): super(Net, self).__init__() def construct(self, x): interpolate = nn.ResizeBilinear() return interpolate(x, scale_factor=2) net = Net() net(Tensor([[[[1, 2, 3, 4], [5, 6, 7, 8]]]], mstype.float32)) def test_resizebilinear_error(): class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.value = Tensor([[[[1, 2, 3, 4], [5, 6, 7, 8]]]], mstype.float32) def construct(self): interpolate = nn.ResizeBilinear() return interpolate(self.value) net = Net() with pytest.raises(ValueError) as ex: net() assert "'size' and 'scale' both none" in str(ex.value) def test_resizebilinear_error_1(): class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.value = Tensor([[[[1, 2, 3, 4], [5, 6, 7, 8]]]], mstype.float32) def construct(self): interpolate = nn.ResizeBilinear() return interpolate(self.value, size=(5, 5), scale_factor=2) net = Net() with pytest.raises(ValueError) as ex: net() assert "'size' and 'scale' both not none" in str(ex.value)