# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore as ms from mindspore.common import dtype as mstype from mindspore import context, Tensor, Parameter from mindspore.nn import Cell, Momentum from mindspore.ops import operations as P from mindspore.train import Model from tests.dataset_mock import MindData class Dataset(MindData): def __init__(self, predict, label, length=3): super(Dataset, self).__init__(size=length) self.predict = predict self.label = label self.index = 0 self.length = length def __iter__(self): return self def __next__(self): if self.index >= self.length: raise StopIteration self.index += 1 return self.predict, self.label def reset(self): self.index = 0 class Net(Cell): def __init__(self, weight, start, limit, delta, strategy1=None, strategy2=None, strategy3=None): super().__init__() self.mul = P.Mul().shard(strategy1) if isinstance(start, float): self.type = mstype.float32 else: self.type = mstype.int32 self.start = Tensor(start, self.type) self.limit = Tensor(limit, self.type) self.delta = Tensor(delta, self.type) self.range = P.Range() self.range.shard(strategy2) self.mul2 = P.Mul().shard(strategy3) self.weight = Parameter(weight, "w") def construct(self, x, b): r_out = self.range(self.start, self.limit, self.delta) out = self.mul(x, self.weight) out = self.mul2(out, r_out) return out dev_num = 4 _x = Tensor(np.ones([64 // dev_num, 8]), dtype=ms.float32) _b = Tensor(np.ones([8]), dtype=ms.float32) _w1 = Tensor(np.ones([64, 8]), dtype=ms.float32) def compile_net(net): learning_rate = 0.1 momentum = 0.9 epoch_size = 2 dataset = Dataset(_x, _b) opt = Momentum(net.trainable_params(), learning_rate, momentum) model = Model(net, optimizer=opt) model.train(epoch_size, dataset, dataset_sink_mode=False) context.reset_auto_parallel_context() def test_range(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=dev_num, global_rank=2) strategy1 = ((2, 2), (2, 2)) strategy2 = ((2,),) strategy3 = ((2, 2), (2,)) net = Net(_w1, 0, 8, 1, strategy1, strategy2, strategy3) compile_net(net) def test_range2(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=dev_num, global_rank=0) strategy1 = ((4, 1), (4, 1)) strategy2 = ((1,),) strategy3 = ((4, 1), (1,)) net = Net(_w1, 0.0, 4.0, 0.5, strategy1, strategy2, strategy3) compile_net(net) def test_range3(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=dev_num, global_rank=2) net = Net(_w1, 0.0, 4.0, 0.5) compile_net(net)