/* * Copyright (c) 2022 Huawei Device Co., Ltd. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "split_builder.h" namespace OHOS { namespace NeuralNetworkRuntime { namespace Ops { static const int INPUT_NUM = 1; static const std::string OP_NAME = "Split"; SplitBuilder::SplitBuilder() {} SplitBuilder::~SplitBuilder() {} OH_NN_ReturnCode SplitBuilder::SetInputAndOutput(const std::vector &inputsIndex, const std::vector &outputsIndex, const std::vector> &allTensors) { auto inputSize = inputsIndex.size(); if (inputSize != INPUT_NUM) { LOGE("[SplitBuilder] The number of inputsIndex should be %d, its number is %zu.", INPUT_NUM, inputSize); return OH_NN_INVALID_PARAMETER; } auto allTensorSize = allTensors.size(); for (auto index : inputsIndex) { if (index >= allTensorSize) { LOGE("[SplitBuilder] InputsIndex of Split is out of range."); return OH_NN_INVALID_PARAMETER; } } for (auto index : outputsIndex) { if (index >= allTensorSize) { LOGE("[SplitBuilder] OutputsIndex of Split is out of range."); return OH_NN_INVALID_PARAMETER; } } m_inputsIndex = inputsIndex; m_outputsIndex = outputsIndex; // The quantization type of the first output determinies that of the operator. SetQuantType(outputsIndex, allTensors); return OH_NN_SUCCESS; } OH_NN_ReturnCode SplitBuilder::SetAxis(std::shared_ptr tensor) { if (tensor->GetDataType() != OH_NN_INT64) { LOGE("[SplitBuilder] The 4th input axis should be type OH_NN_INT64."); return OH_NN_INVALID_PARAMETER; } if (tensor->GetElementCount() != 1) { LOGE("[SplitBuilder] The 4th input axis should be scaler."); return OH_NN_INVALID_PARAMETER; } void* buffer = tensor->GetBuffer(); if (buffer == nullptr) { LOGE("[SplitBuilder] Tensor buffer is nullptr."); return OH_NN_INVALID_PARAMETER; } m_axis = *(static_cast(buffer)); return OH_NN_SUCCESS; } OH_NN_ReturnCode SplitBuilder::SetOutputNum(std::shared_ptr tensor) { if (tensor->GetDataType() != OH_NN_INT64) { LOGE("[SplitBuilder] The 2nd input outputNum should be type OH_NN_INT64."); return OH_NN_INVALID_PARAMETER; } if (tensor->GetElementCount() != 1) { LOGE("[SoftmaxBuilder] The 2nd input outputNum should be scaler."); return OH_NN_INVALID_PARAMETER; } m_output_num = *(static_cast(tensor->GetBuffer())); return OH_NN_SUCCESS; } OH_NN_ReturnCode SplitBuilder::SetSizeSplits(std::shared_ptr tensor) { if (tensor->GetDataType() != OH_NN_INT64) { LOGE("[SplitBuilder] The 3rd input sizeSplit should be type OH_NN_INT64."); return OH_NN_INVALID_PARAMETER; } const int64_t *size_splits_data_ptr = reinterpret_cast(tensor->GetBuffer()); for (uint32_t i = 0; i < tensor->GetElementCount(); i++) { m_size_splits.push_back(*size_splits_data_ptr++); } return OH_NN_SUCCESS; } /** * Build method. * 1.set attr of ops. * 2.set inputIndex of ops. * 3.set outputIndex of ops. */ OH_NN_ReturnCode SplitBuilder::Build(const std::vector ¶msIndex, const std::vector &inputsIndex, const std::vector &outputsIndex, const std::vector> &allTensors) { if (m_isBuild) { LOGE("[SplitBuilder] Split operation has been build, cannot build again."); return OH_NN_OPERATION_FORBIDDEN; } OH_NN_ReturnCode returnCode = SetInputAndOutput(inputsIndex, outputsIndex, allTensors); if (returnCode != OH_NN_SUCCESS) { LOGE("[SplitBuilder] Set index of inputs or outputs failed."); return returnCode; } for (int i : paramsIndex) { std::shared_ptr tensor = allTensors[i]; tensor->IdentifyOpParameter(); switch (tensor->GetType()) { case OH_NN_SPLIT_AXIS: returnCode = SetAxis(tensor); break; case OH_NN_SPLIT_OUTPUT_NUM: returnCode = SetOutputNum(tensor); break; case OH_NN_SPLIT_SIZE_SPLITS: returnCode = SetSizeSplits(tensor); break; default: LOGE("[SplitBuilder] Parameter Type is invalid. type=%d", tensor->GetType()); return OH_NN_INVALID_PARAMETER; } if (returnCode != OH_NN_SUCCESS) { LOGE("[SplitBuilder] Passed invalid param."); return returnCode; } } m_isBuild = true; m_name = OP_NAME; return OH_NN_SUCCESS; } LiteGraphTensorPtr SplitBuilder::GetPrimitive() { if (!m_isBuild) { LOGE("[SplitBuilder] Cannot get primitive before call build."); return { nullptr, DestroyLiteGraphPrimitive }; } auto primitive = mindspore::lite::MindIR_Split_CreatePrimitive(m_output_num, m_size_splits, m_axis); if (primitive == nullptr) { LOGE("[SplitBuilder] MindIR_Split_CreatePrimitive failed."); return { nullptr, DestroyLiteGraphPrimitive }; } LiteGraphTensorPtr graphPrimitivePtr(primitive, DestroyLiteGraphPrimitive); return graphPrimitivePtr; } REGISTER_OPS(SplitBuilder, OH_NN_OPS_SPLIT); } // namespace Ops } // namespace NeuralNetworkRuntime } // namespace OHOS