// Copyright 2015 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "benchmark_register.h" #ifndef BENCHMARK_OS_WINDOWS #ifndef BENCHMARK_OS_FUCHSIA #include #endif #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include "benchmark/benchmark.h" #include "benchmark_api_internal.h" #include "check.h" #include "commandlineflags.h" #include "complexity.h" #include "internal_macros.h" #include "log.h" #include "mutex.h" #include "re.h" #include "statistics.h" #include "string_util.h" #include "timers.h" namespace benchmark { namespace { // For non-dense Range, intermediate values are powers of kRangeMultiplier. static const int kRangeMultiplier = 8; // The size of a benchmark family determines is the number of inputs to repeat // the benchmark on. If this is "large" then warn the user during configuration. static const size_t kMaxFamilySize = 100; } // end namespace namespace internal { //=============================================================================// // BenchmarkFamilies //=============================================================================// // Class for managing registered benchmarks. Note that each registered // benchmark identifies a family of related benchmarks to run. class BenchmarkFamilies { public: static BenchmarkFamilies* GetInstance(); // Registers a benchmark family and returns the index assigned to it. size_t AddBenchmark(std::unique_ptr family); // Clear all registered benchmark families. void ClearBenchmarks(); // Extract the list of benchmark instances that match the specified // regular expression. bool FindBenchmarks(std::string re, std::vector* benchmarks, std::ostream* Err); private: BenchmarkFamilies() {} std::vector> families_; Mutex mutex_; }; BenchmarkFamilies* BenchmarkFamilies::GetInstance() { static BenchmarkFamilies instance; return &instance; } size_t BenchmarkFamilies::AddBenchmark(std::unique_ptr family) { MutexLock l(mutex_); size_t index = families_.size(); families_.push_back(std::move(family)); return index; } void BenchmarkFamilies::ClearBenchmarks() { MutexLock l(mutex_); families_.clear(); families_.shrink_to_fit(); } bool BenchmarkFamilies::FindBenchmarks( std::string spec, std::vector* benchmarks, std::ostream* ErrStream) { BM_CHECK(ErrStream); auto& Err = *ErrStream; // Make regular expression out of command-line flag std::string error_msg; Regex re; bool isNegativeFilter = false; if (spec[0] == '-') { spec.replace(0, 1, ""); isNegativeFilter = true; } if (!re.Init(spec, &error_msg)) { Err << "Could not compile benchmark re: " << error_msg << std::endl; return false; } // Special list of thread counts to use when none are specified const std::vector one_thread = {1}; int next_family_index = 0; MutexLock l(mutex_); for (std::unique_ptr& family : families_) { int family_index = next_family_index; int per_family_instance_index = 0; // Family was deleted or benchmark doesn't match if (!family) continue; if (family->ArgsCnt() == -1) { family->Args({}); } const std::vector* thread_counts = (family->thread_counts_.empty() ? &one_thread : &static_cast&>(family->thread_counts_)); const size_t family_size = family->args_.size() * thread_counts->size(); // The benchmark will be run at least 'family_size' different inputs. // If 'family_size' is very large warn the user. if (family_size > kMaxFamilySize) { Err << "The number of inputs is very large. " << family->name_ << " will be repeated at least " << family_size << " times.\n"; } // reserve in the special case the regex ".", since we know the final // family size. if (spec == ".") benchmarks->reserve(benchmarks->size() + family_size); for (auto const& args : family->args_) { for (int num_threads : *thread_counts) { BenchmarkInstance instance(family.get(), family_index, per_family_instance_index, args, num_threads); const auto full_name = instance.name().str(); if ((re.Match(full_name) && !isNegativeFilter) || (!re.Match(full_name) && isNegativeFilter)) { benchmarks->push_back(std::move(instance)); ++per_family_instance_index; // Only bump the next family index once we've estabilished that // at least one instance of this family will be run. if (next_family_index == family_index) ++next_family_index; } } } } return true; } Benchmark* RegisterBenchmarkInternal(Benchmark* bench) { std::unique_ptr bench_ptr(bench); BenchmarkFamilies* families = BenchmarkFamilies::GetInstance(); families->AddBenchmark(std::move(bench_ptr)); return bench; } // FIXME: This function is a hack so that benchmark.cc can access // `BenchmarkFamilies` bool FindBenchmarksInternal(const std::string& re, std::vector* benchmarks, std::ostream* Err) { return BenchmarkFamilies::GetInstance()->FindBenchmarks(re, benchmarks, Err); } //=============================================================================// // Benchmark //=============================================================================// Benchmark::Benchmark(const char* name) : name_(name), aggregation_report_mode_(ARM_Unspecified), time_unit_(kNanosecond), range_multiplier_(kRangeMultiplier), min_time_(0), iterations_(0), repetitions_(0), measure_process_cpu_time_(false), use_real_time_(false), use_manual_time_(false), complexity_(oNone), complexity_lambda_(nullptr), setup_(nullptr), teardown_(nullptr) { ComputeStatistics("mean", StatisticsMean); ComputeStatistics("median", StatisticsMedian); ComputeStatistics("stddev", StatisticsStdDev); ComputeStatistics("cv", StatisticsCV, kPercentage); } Benchmark::~Benchmark() {} Benchmark* Benchmark::Name(const std::string& name) { SetName(name.c_str()); return this; } Benchmark* Benchmark::Arg(int64_t x) { BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == 1); args_.push_back({x}); return this; } Benchmark* Benchmark::Unit(TimeUnit unit) { time_unit_ = unit; return this; } Benchmark* Benchmark::Range(int64_t start, int64_t limit) { BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == 1); std::vector arglist; AddRange(&arglist, start, limit, range_multiplier_); for (int64_t i : arglist) { args_.push_back({i}); } return this; } Benchmark* Benchmark::Ranges( const std::vector>& ranges) { BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == static_cast(ranges.size())); std::vector> arglists(ranges.size()); for (std::size_t i = 0; i < ranges.size(); i++) { AddRange(&arglists[i], ranges[i].first, ranges[i].second, range_multiplier_); } ArgsProduct(arglists); return this; } Benchmark* Benchmark::ArgsProduct( const std::vector>& arglists) { BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == static_cast(arglists.size())); std::vector indices(arglists.size()); const std::size_t total = std::accumulate( std::begin(arglists), std::end(arglists), std::size_t{1}, [](const std::size_t res, const std::vector& arglist) { return res * arglist.size(); }); std::vector args; args.reserve(arglists.size()); for (std::size_t i = 0; i < total; i++) { for (std::size_t arg = 0; arg < arglists.size(); arg++) { args.push_back(arglists[arg][indices[arg]]); } args_.push_back(args); args.clear(); std::size_t arg = 0; do { indices[arg] = (indices[arg] + 1) % arglists[arg].size(); } while (indices[arg++] == 0 && arg < arglists.size()); } return this; } Benchmark* Benchmark::ArgName(const std::string& name) { BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == 1); arg_names_ = {name}; return this; } Benchmark* Benchmark::ArgNames(const std::vector& names) { BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == static_cast(names.size())); arg_names_ = names; return this; } Benchmark* Benchmark::DenseRange(int64_t start, int64_t limit, int step) { BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == 1); BM_CHECK_LE(start, limit); for (int64_t arg = start; arg <= limit; arg += step) { args_.push_back({arg}); } return this; } Benchmark* Benchmark::Args(const std::vector& args) { BM_CHECK(ArgsCnt() == -1 || ArgsCnt() == static_cast(args.size())); args_.push_back(args); return this; } Benchmark* Benchmark::Apply(void (*custom_arguments)(Benchmark* benchmark)) { custom_arguments(this); return this; } Benchmark* Benchmark::Setup(void (*setup)(const benchmark::State&)) { BM_CHECK(setup != nullptr); setup_ = setup; return this; } Benchmark* Benchmark::Teardown(void (*teardown)(const benchmark::State&)) { BM_CHECK(teardown != nullptr); teardown_ = teardown; return this; } Benchmark* Benchmark::RangeMultiplier(int multiplier) { BM_CHECK(multiplier > 1); range_multiplier_ = multiplier; return this; } Benchmark* Benchmark::MinTime(double t) { BM_CHECK(t > 0.0); BM_CHECK(iterations_ == 0); min_time_ = t; return this; } Benchmark* Benchmark::Iterations(IterationCount n) { BM_CHECK(n > 0); BM_CHECK(IsZero(min_time_)); iterations_ = n; return this; } Benchmark* Benchmark::Repetitions(int n) { BM_CHECK(n > 0); repetitions_ = n; return this; } Benchmark* Benchmark::ReportAggregatesOnly(bool value) { aggregation_report_mode_ = value ? ARM_ReportAggregatesOnly : ARM_Default; return this; } Benchmark* Benchmark::DisplayAggregatesOnly(bool value) { // If we were called, the report mode is no longer 'unspecified', in any case. aggregation_report_mode_ = static_cast( aggregation_report_mode_ | ARM_Default); if (value) { aggregation_report_mode_ = static_cast( aggregation_report_mode_ | ARM_DisplayReportAggregatesOnly); } else { aggregation_report_mode_ = static_cast( aggregation_report_mode_ & ~ARM_DisplayReportAggregatesOnly); } return this; } Benchmark* Benchmark::MeasureProcessCPUTime() { // Can be used together with UseRealTime() / UseManualTime(). measure_process_cpu_time_ = true; return this; } Benchmark* Benchmark::UseRealTime() { BM_CHECK(!use_manual_time_) << "Cannot set UseRealTime and UseManualTime simultaneously."; use_real_time_ = true; return this; } Benchmark* Benchmark::UseManualTime() { BM_CHECK(!use_real_time_) << "Cannot set UseRealTime and UseManualTime simultaneously."; use_manual_time_ = true; return this; } Benchmark* Benchmark::Complexity(BigO complexity) { complexity_ = complexity; return this; } Benchmark* Benchmark::Complexity(BigOFunc* complexity) { complexity_lambda_ = complexity; complexity_ = oLambda; return this; } Benchmark* Benchmark::ComputeStatistics(const std::string& name, StatisticsFunc* statistics, StatisticUnit unit) { statistics_.emplace_back(name, statistics, unit); return this; } Benchmark* Benchmark::Threads(int t) { BM_CHECK_GT(t, 0); thread_counts_.push_back(t); return this; } Benchmark* Benchmark::ThreadRange(int min_threads, int max_threads) { BM_CHECK_GT(min_threads, 0); BM_CHECK_GE(max_threads, min_threads); AddRange(&thread_counts_, min_threads, max_threads, 2); return this; } Benchmark* Benchmark::DenseThreadRange(int min_threads, int max_threads, int stride) { BM_CHECK_GT(min_threads, 0); BM_CHECK_GE(max_threads, min_threads); BM_CHECK_GE(stride, 1); for (auto i = min_threads; i < max_threads; i += stride) { thread_counts_.push_back(i); } thread_counts_.push_back(max_threads); return this; } Benchmark* Benchmark::ThreadPerCpu() { thread_counts_.push_back(CPUInfo::Get().num_cpus); return this; } void Benchmark::SetName(const char* name) { name_ = name; } int Benchmark::ArgsCnt() const { if (args_.empty()) { if (arg_names_.empty()) return -1; return static_cast(arg_names_.size()); } return static_cast(args_.front().size()); } //=============================================================================// // FunctionBenchmark //=============================================================================// void FunctionBenchmark::Run(State& st) { func_(st); } } // end namespace internal void ClearRegisteredBenchmarks() { internal::BenchmarkFamilies::GetInstance()->ClearBenchmarks(); } std::vector CreateRange(int64_t lo, int64_t hi, int multi) { std::vector args; internal::AddRange(&args, lo, hi, multi); return args; } std::vector CreateDenseRange(int64_t start, int64_t limit, int step) { BM_CHECK_LE(start, limit); std::vector args; for (int64_t arg = start; arg <= limit; arg += step) { args.push_back(arg); } return args; } } // end namespace benchmark