// (C) Copyright John Maddock 2007. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error #include #define BOOST_TEST_MAIN #include #include #include #include #include #include "functor.hpp" #include "test_out_of_range.hpp" #include "handle_test_result.hpp" #include "table_type.hpp" #define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \ {\ unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\ BOOST_CHECK_CLOSE(a, b, prec); \ if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\ {\ std::cerr << "Failure was at row " << i << std::endl;\ std::cerr << std::setprecision(35); \ std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\ std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\ }\ } #define BOOST_CHECK_EX(a, i) \ {\ unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\ BOOST_CHECK(a); \ if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\ {\ std::cerr << "Failure was at row " << i << std::endl;\ std::cerr << std::setprecision(35); \ std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\ std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\ }\ } template RealType naive_pdf(RealType v, RealType delta, RealType x) { } template RealType naive_mean(RealType v, RealType delta) { using boost::math::tgamma; return delta * sqrt(v / 2) * tgamma((v - 1) / 2) / tgamma(v / 2); } float naive_mean(float v, float delta) { return (float)naive_mean((double)v, (double)delta); } template RealType naive_variance(RealType v, RealType delta) { using boost::math::tgamma; RealType r = tgamma((v - 1) / 2) / tgamma(v / 2); r *= r; r *= -delta * delta * v / 2; r += (1 + delta * delta) * v / (v - 2); return r; } float naive_variance(float v, float delta) { return (float)naive_variance((double)v, (double)delta); } template RealType naive_skewness(RealType v, RealType delta) { using boost::math::tgamma; RealType tgr = tgamma((v - 1) / 2) / tgamma(v / 2); RealType r = delta * sqrt(v) * tgamma((v - 1) / 2) * (v * (-3 + delta * delta + 2 * v) / ((-3 + v) * (-2 + v)) - 2 * ((1 + delta * delta) * v / (-2 + v) - delta * delta * v * tgr * tgr / 2)); r /= boost::math::constants::root_two() * pow(((1 + delta*delta) * v / (-2 + v) - delta*delta*v*tgr*tgr / 2), RealType(1.5f)) * tgamma(v / 2); return r; } float naive_skewness(float v, float delta) { return (float)naive_skewness((double)v, (double)delta); } template RealType naive_kurtosis_excess(RealType v, RealType delta) { using boost::math::tgamma; RealType tgr = tgamma((v - 1) / 2) / tgamma(v / 2); RealType r = -delta * delta * v * tgr * tgr / 2; r *= v * (delta * delta * (1 + v) + 3 * (-5 + 3 * v)) / ((-3 + v)*(-2 + v)) - 3 * ((1 + delta * delta) * v / (-2 + v) - delta * delta * v * tgr * tgr / 2); r += (3 + 6 * delta * delta + delta * delta * delta * delta)* v * v / ((-4 + v) * (-2 + v)); r /= (1 + delta*delta)*v / (-2 + v) - delta*delta*v *tgr*tgr / 2; r /= (1 + delta*delta)*v / (-2 + v) - delta*delta*v *tgr*tgr / 2; return r; } float naive_kurtosis_excess(float v, float delta) { return (float)naive_kurtosis_excess((double)v, (double)delta); } template void test_spot( RealType df, // Degrees of freedom RealType ncp, // non-centrality param RealType t, // T statistic RealType P, // CDF RealType Q, // Complement of CDF RealType tol) // Test tolerance { // An extra fudge factor for real_concept which has a less accurate tgamma: RealType tolerance_tgamma_extra = std::numeric_limits::is_specialized ? 1 : 5; boost::math::non_central_t_distribution dist(df, ncp); BOOST_CHECK_CLOSE( cdf(dist, t), P, tol); #ifndef BOOST_NO_EXCEPTIONS try{ BOOST_CHECK_CLOSE( mean(dist), naive_mean(df, ncp), tol); BOOST_CHECK_CLOSE( variance(dist), naive_variance(df, ncp), tol); BOOST_CHECK_CLOSE( skewness(dist), naive_skewness(df, ncp), tol * 10 * tolerance_tgamma_extra); BOOST_CHECK_CLOSE( kurtosis_excess(dist), naive_kurtosis_excess(df, ncp), tol * 50 * tolerance_tgamma_extra); BOOST_CHECK_CLOSE( kurtosis(dist), 3 + naive_kurtosis_excess(df, ncp), tol * 50 * tolerance_tgamma_extra); } catch(const std::domain_error&) { } #endif /* BOOST_CHECK_CLOSE( pdf(dist, t), naive_pdf(dist.degrees_of_freedom(), ncp, t), tol * 50); */ if((P < 0.99) && (Q < 0.99)) { // // We can only check this if P is not too close to 1, // so that we can guarantee Q is reasonably free of error: // BOOST_CHECK_CLOSE( cdf(complement(dist, t)), Q, tol); BOOST_CHECK_CLOSE( quantile(dist, P), t, tol * 10); BOOST_CHECK_CLOSE( quantile(complement(dist, Q)), t, tol * 10); /* Removed because can give more than one solution. BOOST_CHECK_CLOSE( dist.find_degrees_of_freedom(ncp, t, P), df, tol * 10); BOOST_CHECK_CLOSE( dist.find_degrees_of_freedom(boost::math::complement(ncp, t, Q)), df, tol * 10); BOOST_CHECK_CLOSE( dist.find_non_centrality(df, t, P), ncp, tol * 10); BOOST_CHECK_CLOSE( dist.find_non_centrality(boost::math::complement(df, t, Q)), ncp, tol * 10); */ } } template // Any floating-point type RealType. void test_spots(RealType) { using namespace std; // // Approx limit of test data is 12 digits expressed here as a percentage: // RealType tolerance = (std::max)( boost::math::tools::epsilon(), (RealType)5e-12f) * 100; // // At float precision we need to up the tolerance, since // the input values are rounded off to inexact quantities // the results get thrown off by a noticeable amount. // if(boost::math::tools::digits() < 50) tolerance *= 50; if(boost::is_floating_point::value != 1) tolerance *= 20; // real_concept special functions are less accurate cout << "Tolerance = " << tolerance << "%." << endl; // // Test data is taken from: // // Computing discrete mixtures of continuous // distributions: noncentral chisquare, noncentral t // and the distribution of the square of the sample // multiple correlation coefficient. // Denise Benton, K. Krishnamoorthy. // Computational Statistics & Data Analysis 43 (2003) 249 - 267 // test_spot( static_cast(3), // degrees of freedom static_cast(1), // non centrality static_cast(2.34), // T static_cast(0.801888999613917), // Probability of result (CDF), P static_cast(1 - 0.801888999613917), // Q = 1 - P tolerance); test_spot( static_cast(126), // degrees of freedom static_cast(-2), // non centrality static_cast(-4.33), // T static_cast(1.252846196792878e-2), // Probability of result (CDF), P static_cast(1 - 1.252846196792878e-2), // Q = 1 - P tolerance); test_spot( static_cast(20), // degrees of freedom static_cast(23), // non centrality static_cast(23), // T static_cast(0.460134400391924), // Probability of result (CDF), P static_cast(1 - 0.460134400391924), // Q = 1 - P tolerance); test_spot( static_cast(20), // degrees of freedom static_cast(33), // non centrality static_cast(34), // T static_cast(0.532008386378725), // Probability of result (CDF), P static_cast(1 - 0.532008386378725), // Q = 1 - P tolerance); test_spot( static_cast(12), // degrees of freedom static_cast(38), // non centrality static_cast(39), // T static_cast(0.495868184917805), // Probability of result (CDF), P static_cast(1 - 0.495868184917805), // Q = 1 - P tolerance); test_spot( static_cast(12), // degrees of freedom static_cast(39), // non centrality static_cast(39), // T static_cast(0.446304024668836), // Probability of result (CDF), P static_cast(1 - 0.446304024668836), // Q = 1 - P tolerance); test_spot( static_cast(200), // degrees of freedom static_cast(38), // non centrality static_cast(39), // T static_cast(0.666194209961795), // Probability of result (CDF), P static_cast(1 - 0.666194209961795), // Q = 1 - P tolerance); test_spot( static_cast(200), // degrees of freedom static_cast(42), // non centrality static_cast(40), // T static_cast(0.179292265426085), // Probability of result (CDF), P static_cast(1 - 0.179292265426085), // Q = 1 - P tolerance); // From https://svn.boost.org/trac/boost/ticket/10480. // Test value from Mathematica N[CDF[NoncentralStudentTDistribution[2, 4], 5], 35]: test_spot( static_cast(2), // degrees of freedom static_cast(4), // non centrality static_cast(5), // T static_cast(0.53202069866995310466912357978934321L), // Probability of result (CDF), P static_cast(1 - 0.53202069866995310466912357978934321L), // Q = 1 - P tolerance); /* This test fails "Result of tgamma is too large to represent" at naive_mean check for max and infinity. if (std::numeric_limits::has_infinity) { test_spot( //static_cast(std::numeric_limits::infinity()), // degrees of freedom static_cast((std::numeric_limits::max)()), // degrees of freedom static_cast(10), // non centrality static_cast(11), // T static_cast(0.84134474606854293), // Probability of result (CDF), P static_cast(0.15865525393145707), // Q = 1 - P tolerance); } */ boost::math::non_central_t_distribution dist(static_cast(8), static_cast(12)); BOOST_CHECK_CLOSE(pdf(dist, 12), static_cast(1.235329715425894935157684607751972713457e-1L), tolerance); BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution(126, -2), -4), static_cast(5.797932289365814702402873546466798025787e-2L), tolerance); BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution(126, 2), 4), static_cast(5.797932289365814702402873546466798025787e-2L), tolerance); BOOST_CHECK_CLOSE(pdf(boost::math::non_central_t_distribution(126, 2), 0), static_cast(5.388394890639957139696546086044839573749e-2L), tolerance); // Error handling checks: //check_out_of_range >(1, 1); // Fails one check because df for this distribution *can* be infinity. BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_t_distribution(0, 1), 0), std::domain_error); BOOST_MATH_CHECK_THROW(pdf(boost::math::non_central_t_distribution(-1, 1), 0), std::domain_error); BOOST_MATH_CHECK_THROW(quantile(boost::math::non_central_t_distribution(1, 1), -1), std::domain_error); BOOST_MATH_CHECK_THROW(quantile(boost::math::non_central_t_distribution(1, 1), 2), std::domain_error); } // template void test_spots(RealType) template T nct_cdf(T df, T nc, T x) { return cdf(boost::math::non_central_t_distribution(df, nc), x); } template T nct_ccdf(T df, T nc, T x) { return cdf(complement(boost::math::non_central_t_distribution(df, nc), x)); } template void do_test_nc_t(T& data, const char* type_name, const char* test) { typedef Real value_type; std::cout << "Testing: " << test << std::endl; #ifdef NC_T_CDF_FUNCTION_TO_TEST value_type(*fp1)(value_type, value_type, value_type) = NC_T_CDF_FUNCTION_TO_TEST; #else value_type(*fp1)(value_type, value_type, value_type) = nct_cdf; #endif boost::math::tools::test_result result; #if !(defined(ERROR_REPORTING_MODE) && !defined(NC_T_CDF_FUNCTION_TO_TEST)) result = boost::math::tools::test_hetero( data, bind_func(fp1, 0, 1, 2), extract_result(3)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "non central t CDF", test); #endif #if !(defined(ERROR_REPORTING_MODE) && !defined(NC_T_CCDF_FUNCTION_TO_TEST)) #ifdef NC_T_CCDF_FUNCTION_TO_TEST fp1 = NC_T_CCDF_FUNCTION_TO_TEST; #else fp1 = nct_ccdf; #endif result = boost::math::tools::test_hetero( data, bind_func(fp1, 0, 1, 2), extract_result(4)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "non central t CDF complement", test); std::cout << std::endl; #endif } template void quantile_sanity_check(T& data, const char* type_name, const char* test) { #ifndef ERROR_REPORTING_MODE typedef Real value_type; // // Tests with type real_concept take rather too long to run, so // for now we'll disable them: // if(!boost::is_floating_point::value) return; std::cout << "Testing: " << type_name << " quantile sanity check, with tests " << test << std::endl; // // These sanity checks test for a round trip accuracy of one half // of the bits in T, unless T is type float, in which case we check // for just one decimal digit. The problem here is the sensitivity // of the functions, not their accuracy. This test data was generated // for the forward functions, which means that when it is used as // the input to the inverses then it is necessarily inexact. This rounding // of the input is what makes the data unsuitable for use as an accuracy check, // and also demonstrates that you can't in general round-trip these functions. // It is however a useful sanity check. // value_type precision = static_cast(ldexp(1.0, 1 - boost::math::policies::digits >() / 2)) * 100; if(boost::math::policies::digits >() < 50) precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated to float for(unsigned i = 0; i < data.size(); ++i) { if(data[i][3] == 0) { BOOST_CHECK(0 == quantile(boost::math::non_central_t_distribution(data[i][0], data[i][1]), data[i][3])); } else if(data[i][3] < 0.9999f) { value_type p = quantile(boost::math::non_central_t_distribution(data[i][0], data[i][1]), data[i][3]); value_type pt = data[i][2]; BOOST_CHECK_CLOSE_EX(pt, p, precision, i); } if(data[i][4] == 0) { BOOST_CHECK(0 == quantile(complement(boost::math::non_central_t_distribution(data[i][0], data[i][1]), data[i][3]))); } else if(data[i][4] < 0.9999f) { value_type p = quantile(complement(boost::math::non_central_t_distribution(data[i][0], data[i][1]), data[i][4])); value_type pt = data[i][2]; BOOST_CHECK_CLOSE_EX(pt, p, precision, i); } if(boost::math::tools::digits() > 50) { // // Sanity check mode, the accuracy of // the mode is at *best* the square root of the accuracy of the PDF: // #ifndef BOOST_NO_EXCEPTIONS try{ value_type m = mode(boost::math::non_central_t_distribution(data[i][0], data[i][1])); value_type p = pdf(boost::math::non_central_t_distribution(data[i][0], data[i][1]), m); value_type delta = (std::max)(fabs(m * sqrt(precision) * 50), sqrt(precision) * 50); BOOST_CHECK_EX(pdf(boost::math::non_central_t_distribution(data[i][0], data[i][1]), m + delta) <= p, i); BOOST_CHECK_EX(pdf(boost::math::non_central_t_distribution(data[i][0], data[i][1]), m - delta) <= p, i); } catch(const boost::math::evaluation_error&) {} #endif #if 0 // // Sanity check degrees-of-freedom finder, don't bother at float // precision though as there's not enough data in the probability // values to get back to the correct degrees of freedom or // non-centrality parameter: // try{ if((data[i][3] < 0.99) && (data[i][3] != 0)) { BOOST_CHECK_CLOSE_EX( boost::math::non_central_t_distribution::find_degrees_of_freedom(data[i][1], data[i][2], data[i][3]), data[i][0], precision, i); BOOST_CHECK_CLOSE_EX( boost::math::non_central_t_distribution::find_non_centrality(data[i][0], data[i][2], data[i][3]), data[i][1], precision, i); } if((data[i][4] < 0.99) && (data[i][4] != 0)) { BOOST_CHECK_CLOSE_EX( boost::math::non_central_t_distribution::find_degrees_of_freedom(boost::math::complement(data[i][1], data[i][2], data[i][4])), data[i][0], precision, i); BOOST_CHECK_CLOSE_EX( boost::math::non_central_t_distribution::find_non_centrality(boost::math::complement(data[i][0], data[i][2], data[i][4])), data[i][1], precision, i); } } catch(const std::exception& e) { BOOST_ERROR(e.what()); } #endif } } #endif } template void test_accuracy(T, const char* type_name) { #include "nct.ipp" do_test_nc_t(nct, type_name, "Non Central T"); quantile_sanity_check(nct, type_name, "Non Central T"); if(std::numeric_limits::is_specialized) { // // Don't run these tests for real_concept: they take too long and don't converge // without numeric_limits and lanczos support: // #include "nct_small_delta.ipp" do_test_nc_t(nct_small_delta, type_name, "Non Central T (small non-centrality)"); quantile_sanity_check(nct_small_delta, type_name, "Non Central T (small non-centrality)"); #include "nct_asym.ipp" do_test_nc_t(nct_asym, type_name, "Non Central T (large parameters)"); quantile_sanity_check(nct_asym, type_name, "Non Central T (large parameters)"); } } template void test_big_df(RealType) { using namespace boost::math; if(typeid(RealType) != typeid(boost::math::concepts::real_concept)) { // Ordinary floats only. // Could also test if (std::numeric_limits::is_specialized); RealType tolerance = 10 * boost::math::tools::epsilon(); // static_cast(1e-14); // std::cout.precision(17); // Note: need to reset after calling BOOST_CHECK_s // due to buglet in Boost.test that fails to restore precision correctly. // Test for large degrees of freedom when should be same as normal. RealType inf = (std::numeric_limits::has_infinity) ? std::numeric_limits::infinity() : boost::math::tools::max_value(); RealType nan = std::numeric_limits::quiet_NaN(); // Tests for df = max_value and infinity. RealType max_val = boost::math::tools::max_value(); non_central_t_distribution maxdf(max_val, 0); BOOST_CHECK_EQUAL(maxdf.degrees_of_freedom(), max_val); non_central_t_distribution infdf(inf, 0); BOOST_CHECK_EQUAL(infdf.degrees_of_freedom(), inf); BOOST_CHECK_EQUAL(mean(infdf), 0); BOOST_CHECK_EQUAL(mean(maxdf), 0); BOOST_CHECK_EQUAL(variance(infdf), 1); BOOST_CHECK_EQUAL(variance(maxdf), 1); BOOST_CHECK_EQUAL(skewness(infdf), 0); BOOST_CHECK_EQUAL(skewness(maxdf), 0); BOOST_CHECK_EQUAL(kurtosis_excess(infdf), 3); BOOST_CHECK_CLOSE_FRACTION(kurtosis_excess(maxdf), static_cast(3), tolerance); // Bad df examples. #ifndef BOOST_NO_EXCEPTIONS BOOST_MATH_CHECK_THROW(non_central_t_distribution minfdf(-inf, 0), std::domain_error); BOOST_MATH_CHECK_THROW(non_central_t_distribution minfdf(nan, 0), std::domain_error); BOOST_MATH_CHECK_THROW(non_central_t_distribution minfdf(-nan, 0), std::domain_error); #else BOOST_MATH_CHECK_THROW(non_central_t_distribution(-inf, 0), std::domain_error); BOOST_MATH_CHECK_THROW(non_central_t_distribution(nan, 0), std::domain_error); BOOST_MATH_CHECK_THROW(non_central_t_distribution(-nan, 0), std::domain_error); #endif // BOOST_CHECK_CLOSE_FRACTION(pdf(infdf, 0), static_cast(0.3989422804014326779399460599343818684759L), tolerance); BOOST_CHECK_CLOSE_FRACTION(pdf(maxdf, 0), boost::math::constants::one_div_root_two_pi(), tolerance); BOOST_CHECK_CLOSE_FRACTION(pdf(infdf, 0), boost::math::constants::one_div_root_two_pi(), tolerance); BOOST_CHECK_CLOSE_FRACTION(cdf(infdf, 0), boost::math::constants::half(), tolerance); BOOST_CHECK_CLOSE_FRACTION(cdf(maxdf, 0), boost::math::constants::half(), tolerance); // non-centrality delta = 10 // Degrees of freedom = Max value and = infinity should be very close. non_central_t_distribution maxdf10(max_val, 10); non_central_t_distribution infdf10(inf, 10); BOOST_CHECK_EQUAL(infdf10.degrees_of_freedom(), inf); BOOST_CHECK_EQUAL(infdf10.non_centrality(), 10); BOOST_CHECK_EQUAL(mean(infdf10), 10); BOOST_CHECK_CLOSE_FRACTION(mean(maxdf10), static_cast(10), tolerance); BOOST_CHECK_CLOSE_FRACTION(pdf(infdf10, 11), pdf(maxdf10, 11), tolerance); // BOOST_CHECK_CLOSE_FRACTION(cdf(complement(infdf10, 11)), 1 - cdf(infdf10, 11), tolerance); // BOOST_CHECK_CLOSE_FRACTION(cdf(complement(maxdf10, 11)), 1 - cdf(maxdf10, 11), tolerance); // BOOST_CHECK_CLOSE_FRACTION(cdf(complement(infdf10, 11)), 1 - cdf(maxdf10, 11), tolerance); // std::cout.precision(17); //std::cout << "cdf(maxdf10, 11) = " << cdf(maxdf10, 11) << ' ' << cdf(complement(maxdf10, 11)) << endl; //std::cout << "cdf(infdf10, 11) = " << cdf(infdf10, 11) << ' ' << cdf(complement(infdf10, 11)) << endl; //std::cout << "quantile(maxdf10, 0.5) = " << quantile(maxdf10, 0.5) << std::endl; // quantile(maxdf10, 0.5) = 10.000000000000004 //std::cout << "quantile(infdf10, 0.5) = " << ' ' << quantile(infdf10, 0.5) << std::endl; // quantile(infdf10, 0.5) = 10 BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.5), static_cast(10), tolerance); BOOST_CHECK_CLOSE_FRACTION(quantile(maxdf10, 0.5), static_cast(10), tolerance); BOOST_TEST_MESSAGE("non_central_t_distribution infdf100(inf, 100);"); non_central_t_distribution infdf100(inf, 100); BOOST_TEST_MESSAGE("non_central_t_distribution maxdf100(max_val, 100);"); non_central_t_distribution maxdf100(max_val, 100); BOOST_TEST_MESSAGE("BOOST_CHECK_CLOSE_FRACTION(quantile(infdf100, 0.5), static_cast(100), tolerance);"); BOOST_CHECK_CLOSE_FRACTION(quantile(infdf100, 0.5), static_cast(100), tolerance); BOOST_TEST_MESSAGE("BOOST_CHECK_CLOSE_FRACTION(quantile(maxdf100, 0.5), static_cast(100), tolerance);"); BOOST_CHECK_CLOSE_FRACTION(quantile(maxdf100, 0.5), static_cast(100), tolerance); { // Loop back. RealType p = static_cast(0.01); RealType x = quantile(infdf10, p); RealType c = cdf(infdf10, x); BOOST_CHECK_CLOSE_FRACTION(c, p, tolerance); } { RealType q = static_cast(0.99); RealType x = quantile(complement(infdf10, q)); RealType c = cdf(complement(infdf10, x)); BOOST_CHECK_CLOSE_FRACTION(c, q, tolerance); } { // Loop back. RealType p = static_cast(0.99); RealType x = quantile(infdf10, p); RealType c = cdf(infdf10, x); BOOST_CHECK_CLOSE_FRACTION(c, p, tolerance); } { RealType q = static_cast(0.01); RealType x = quantile(complement(infdf10, q)); RealType c = cdf(complement(infdf10, x)); BOOST_CHECK_CLOSE_FRACTION(c, q, tolerance * 2); // c{0.0100000128} and q{0.00999999978} } //RealType cinf = quantile(infdf10, 0.25); //std::cout << cinf << ' ' << cdf(infdf10, cinf) << std::endl; // 9.32551 0.25 //RealType cmax = quantile(maxdf10, 0.25); //std::cout << cmax << ' ' << cdf(maxdf10, cmax) << std::endl; // 9.32551 0.25 //RealType cinfc = quantile(complement(infdf10, 0.75)); //std::cout << cinfc << ' ' << cdf(infdf10, cinfc) << std::endl; // 9.32551 0.25 //RealType cmaxc = quantile(complement(maxdf10, 0.75)); //std::cout << cmaxc << ' ' << cdf(maxdf10, cmaxc) << std::endl; // 9.32551 0.25 BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.5), quantile(maxdf10, 0.5), tolerance); // BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.2), quantile(maxdf10, 0.2), tolerance); // BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.8), quantile(maxdf10, 0.8), tolerance); // BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.25), quantile(complement(infdf10, 0.75)), tolerance); // BOOST_CHECK_CLOSE_FRACTION(quantile(complement(infdf10, 0.5)), quantile(complement(maxdf10, 0.5)), tolerance); // BOOST_CHECK_CLOSE_FRACTION(quantile(maxdf10, 0.25), quantile(complement(maxdf10, 0.75)), tolerance); // BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.99), quantile(complement(infdf10, 0.01)), tolerance); // BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.4), quantile(complement(infdf10, 0.6)), tolerance); // BOOST_CHECK_CLOSE_FRACTION(quantile(infdf10, 0.01), quantile(complement(infdf10, 1 - 0.01)), tolerance); // } } // void test_big_df(RealType) template void test_ignore_policy(RealType) { // Check on returns when errors are ignored. if((typeid(RealType) != typeid(boost::math::concepts::real_concept)) && std::numeric_limits::has_infinity && std::numeric_limits::has_quiet_NaN ) { // Ordinary floats only. using namespace boost::math; // RealType inf = std::numeric_limits::infinity(); RealType nan = std::numeric_limits::quiet_NaN(); using boost::math::policies::policy; // Types of error whose action can be altered by policies:. //using boost::math::policies::evaluation_error; //using boost::math::policies::domain_error; //using boost::math::policies::overflow_error; //using boost::math::policies::underflow_error; //using boost::math::policies::domain_error; //using boost::math::policies::pole_error; //// Actions on error (in enum error_policy_type): //using boost::math::policies::errno_on_error; //using boost::math::policies::ignore_error; //using boost::math::policies::throw_on_error; //using boost::math::policies::denorm_error; //using boost::math::policies::pole_error; //using boost::math::policies::user_error; typedef policy< boost::math::policies::domain_error, boost::math::policies::overflow_error, boost::math::policies::underflow_error, boost::math::policies::denorm_error, boost::math::policies::pole_error, boost::math::policies::evaluation_error > ignore_all_policy; typedef non_central_t_distribution ignore_error_non_central_t; // Only test NaN and infinity if type has these features (realconcept returns zero). // Integers are always converted to RealType, // others requires static cast to RealType from long double. if(std::numeric_limits::has_quiet_NaN) { // Mean BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(-nan, 0)))); BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(+nan, 0)))); BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(-1, 0)))); BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(0, 0)))); BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(1, 0)))); BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(2, nan)))); BOOST_CHECK((boost::math::isnan)(mean(ignore_error_non_central_t(nan, nan)))); BOOST_CHECK(boost::math::isfinite(mean(ignore_error_non_central_t(2, 0)))); // OK // Variance BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(nan, 0)))); BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(1, nan)))); BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(2, nan)))); BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(-1, 0)))); BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(0, 0)))); BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(1, 0)))); BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(static_cast(1.7L), 0)))); BOOST_CHECK((boost::math::isnan)(variance(ignore_error_non_central_t(2, 0)))); // Skewness BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(std::numeric_limits::quiet_NaN(), 0)))); BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(-1, 0)))); BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(0, 0)))); BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(1, 0)))); BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(2, 0)))); BOOST_CHECK((boost::math::isnan)(skewness(ignore_error_non_central_t(3, 0)))); // Kurtosis BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(std::numeric_limits::quiet_NaN(), 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(-1, 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(0, 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(1, 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(2, 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(static_cast(2.0001L), 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(3, 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis(ignore_error_non_central_t(4, 0)))); // Kurtosis excess BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(std::numeric_limits::quiet_NaN(), 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(-1, 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(0, 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(1, 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(2, 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(static_cast(2.0001L), 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(3, 0)))); BOOST_CHECK((boost::math::isnan)(kurtosis_excess(ignore_error_non_central_t(4, 0)))); } // has_quiet_NaN BOOST_CHECK(boost::math::isfinite(mean(ignore_error_non_central_t(1 + std::numeric_limits::epsilon(), 0)))); BOOST_CHECK(boost::math::isfinite(variance(ignore_error_non_central_t(2 + 2 * std::numeric_limits::epsilon(), 0)))); BOOST_CHECK(boost::math::isfinite(variance(ignore_error_non_central_t(static_cast(2.0001L), 0)))); BOOST_CHECK(boost::math::isfinite(variance(ignore_error_non_central_t(2 + 2 * std::numeric_limits::epsilon(), 0)))); BOOST_CHECK(boost::math::isfinite(skewness(ignore_error_non_central_t(3 + 3 * std::numeric_limits::epsilon(), 0)))); BOOST_CHECK(boost::math::isfinite(kurtosis(ignore_error_non_central_t(4 + 4 * std::numeric_limits::epsilon(), 0)))); BOOST_CHECK(boost::math::isfinite(kurtosis(ignore_error_non_central_t(static_cast(4.0001L), 0)))); // check_out_of_range >(1, 0); // Fails one check because allows df = infinity. check_support >(non_central_t_distribution(1, 0)); } // ordinary floats. } // template void test_ignore_policy(RealType)