/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_quaternion2rotation_f32.c * Description: Floating-point quaternion 2 rotation conversion * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/quaternion_math_functions.h" #include /** @ingroup groupQuaternionMath */ /** @defgroup QuatConv Quaternion conversions Conversions between quaternion and rotation representations. */ /** @ingroup QuatConv */ /** @defgroup QuatRot Quaternion to Rotation Conversions from quaternion to rotation. */ /** @addtogroup QuatRot @{ */ /** @brief Conversion of quaternion to equivalent rotation matrix. @param[in] pInputQuaternions points to an array of normalized quaternions @param[out] pOutputRotations points to an array of 3x3 rotations (in row order) @param[in] nbQuaternions number of quaternions in the array @return none. @par Format of rotation matrix The quaternion a + ib + jc + kd is converted into rotation matrix:
     a^2 + b^2 - c^2 - d^2                 2bc - 2ad                 2bd + 2ac
                 2bc + 2ad     a^2 - b^2 + c^2 - d^2                 2cd - 2ab
                 2bd - 2ac                 2cd + 2ab     a^2 - b^2 - c^2 + d^2
   
Rotation matrix is saved in row order : R00 R01 R02 R10 R11 R12 R20 R21 R22 */ #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) #include "arm_helium_utils.h" void arm_quaternion2rotation_f32(const float32_t *pInputQuaternions, float32_t *pOutputRotations, uint32_t nbQuaternions) { f32x4_t vec0,vec1, vec2 ,vec3; float32_t q2q3, tmp1, tmp2 ; for(uint32_t nb=0; nb < nbQuaternions; nb++) { // q0 q1 q2 q3 vec0 = vld1q(pInputQuaternions); // q0^2 q1^2 q2^2 q3^2 vec1 = vmulq(vec0,vec0); // q0^2 q1q0 q2q0 q3q0 vec2 = vmulq_n_f32(vec0, vgetq_lane(vec0,0)); // 2 (q0^2 q1q0 q2q0 q3q0) vec2 = vmulq_n_f32(vec2, 2.0f); // 2 q2q3 q2q3 = vgetq_lane(vec0,2) * vgetq_lane(vec0,3); q2q3 = q2q3 * 2.0f; // 2 (q0q1 q1^2 q2q1 q3q1) vec3 = vmulq_n_f32(vec0, vgetq_lane(vec0,1)); vec3 = vmulq_n_f32(vec3, 2.0f); vec0 = vsetq_lane(vgetq_lane(vec1,0) + vgetq_lane(vec1,1),vec0,0); vec0 = vsetq_lane(vgetq_lane(vec0,0) - vgetq_lane(vec1,2),vec0,0); vec0 = vsetq_lane(vgetq_lane(vec0,0) - vgetq_lane(vec1,3),vec0,0); vec0 = vsetq_lane(vgetq_lane(vec3,2) - vgetq_lane(vec2,3),vec0,1); vec0 = vsetq_lane(vgetq_lane(vec3,3) + vgetq_lane(vec2,2),vec0,2); vec0 = vsetq_lane(vgetq_lane(vec3,2) + vgetq_lane(vec2,3),vec0,3); vst1q(pOutputRotations, vec0); pOutputRotations += 4; tmp1 = vgetq_lane(vec1,0) - vgetq_lane(vec1,1); tmp2 = vgetq_lane(vec1,2) - vgetq_lane(vec1,3); vec0 = vsetq_lane(tmp1 + tmp2,vec0,0); vec0 = vsetq_lane(q2q3 - vgetq_lane(vec2,1) ,vec0,1); vec0 = vsetq_lane(vgetq_lane(vec3,3) - vgetq_lane(vec2,2),vec0,2); vec0 = vsetq_lane(q2q3 + vgetq_lane(vec2,1) ,vec0,3); vst1q(pOutputRotations, vec0); pOutputRotations += 4; *pOutputRotations = tmp1 - tmp2; pOutputRotations ++; pInputQuaternions += 4; } } #else void arm_quaternion2rotation_f32(const float32_t *pInputQuaternions, float32_t *pOutputRotations, uint32_t nbQuaternions) { for(uint32_t nb=0; nb < nbQuaternions; nb++) { float32_t q00 = SQ(pInputQuaternions[0 + nb * 4]); float32_t q11 = SQ(pInputQuaternions[1 + nb * 4]); float32_t q22 = SQ(pInputQuaternions[2 + nb * 4]); float32_t q33 = SQ(pInputQuaternions[3 + nb * 4]); float32_t q01 = pInputQuaternions[0 + nb * 4]*pInputQuaternions[1 + nb * 4]; float32_t q02 = pInputQuaternions[0 + nb * 4]*pInputQuaternions[2 + nb * 4]; float32_t q03 = pInputQuaternions[0 + nb * 4]*pInputQuaternions[3 + nb * 4]; float32_t q12 = pInputQuaternions[1 + nb * 4]*pInputQuaternions[2 + nb * 4]; float32_t q13 = pInputQuaternions[1 + nb * 4]*pInputQuaternions[3 + nb * 4]; float32_t q23 = pInputQuaternions[2 + nb * 4]*pInputQuaternions[3 + nb * 4]; float32_t xx = q00 + q11 - q22 - q33; float32_t yy = q00 - q11 + q22 - q33; float32_t zz = q00 - q11 - q22 + q33; float32_t xy = 2*(q12 - q03); float32_t xz = 2*(q13 + q02); float32_t yx = 2*(q12 + q03); float32_t yz = 2*(q23 - q01); float32_t zx = 2*(q13 - q02); float32_t zy = 2*(q23 + q01); pOutputRotations[0 + nb * 9] = xx; pOutputRotations[1 + nb * 9] = xy; pOutputRotations[2 + nb * 9] = xz; pOutputRotations[3 + nb * 9] = yx; pOutputRotations[4 + nb * 9] = yy; pOutputRotations[5 + nb * 9] = yz; pOutputRotations[6 + nb * 9] = zx; pOutputRotations[7 + nb * 9] = zy; pOutputRotations[8 + nb * 9] = zz; } } #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ /** @} end of QuatRot group */