/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/geometry/GrQuad.h" #include "include/core/SkMatrix.h" using V4f = skvx::Vec<4, float>; static bool aa_affects_rect(float ql, float qt, float qr, float qb) { return !SkScalarIsInt(ql) || !SkScalarIsInt(qr) || !SkScalarIsInt(qt) || !SkScalarIsInt(qb); } static void map_rect_translate_scale(const SkRect& rect, const SkMatrix& m, V4f* xs, V4f* ys) { SkMatrix::TypeMask tm = m.getType(); SkASSERT(tm <= (SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask)); V4f r = V4f::Load(&rect); if (tm > SkMatrix::kIdentity_Mask) { const V4f t{m.getTranslateX(), m.getTranslateY(), m.getTranslateX(), m.getTranslateY()}; if (tm <= SkMatrix::kTranslate_Mask) { r += t; } else { const V4f s{m.getScaleX(), m.getScaleY(), m.getScaleX(), m.getScaleY()}; r = r * s + t; } } *xs = skvx::shuffle<0, 0, 2, 2>(r); *ys = skvx::shuffle<1, 3, 1, 3>(r); } static void map_quad_general(const V4f& qx, const V4f& qy, const SkMatrix& m, V4f* xs, V4f* ys, V4f* ws) { *xs = mad(m.getScaleX(), qx, mad(m.getSkewX(), qy, m.getTranslateX())); *ys = mad(m.getSkewY(), qx, mad(m.getScaleY(), qy, m.getTranslateY())); if (m.hasPerspective()) { V4f w = mad(m.getPerspX(), qx, mad(m.getPerspY(), qy, m.get(SkMatrix::kMPersp2))); if (ws) { // Output the calculated w coordinates *ws = w; } else { // Apply perspective division immediately V4f iw = 1.f / w; *xs *= iw; *ys *= iw; } } else if (ws) { *ws = 1.f; } } static void map_rect_general(const SkRect& rect, const SkMatrix& matrix, V4f* xs, V4f* ys, V4f* ws) { V4f rx{rect.fLeft, rect.fLeft, rect.fRight, rect.fRight}; V4f ry{rect.fTop, rect.fBottom, rect.fTop, rect.fBottom}; map_quad_general(rx, ry, matrix, xs, ys, ws); } // Rearranges (top-left, top-right, bottom-right, bottom-left) ordered skQuadPts into xs and ys // ordered (top-left, bottom-left, top-right, bottom-right) static void rearrange_sk_to_gr_points(const SkPoint skQuadPts[4], V4f* xs, V4f* ys) { *xs = V4f{skQuadPts[0].fX, skQuadPts[3].fX, skQuadPts[1].fX, skQuadPts[2].fX}; *ys = V4f{skQuadPts[0].fY, skQuadPts[3].fY, skQuadPts[1].fY, skQuadPts[2].fY}; } // If an SkRect is transformed by this matrix, what class of quad is required to represent it. static GrQuad::Type quad_type_for_transformed_rect(const SkMatrix& matrix) { if (matrix.rectStaysRect()) { return GrQuad::Type::kAxisAligned; } else if (matrix.preservesRightAngles()) { return GrQuad::Type::kRectilinear; } else if (matrix.hasPerspective()) { return GrQuad::Type::kPerspective; } else { return GrQuad::Type::kGeneral; } } // Perform minimal analysis of 'pts' (which are suitable for MakeFromSkQuad), and determine a // quad type that will be as minimally general as possible. static GrQuad::Type quad_type_for_points(const SkPoint pts[4], const SkMatrix& matrix) { if (matrix.hasPerspective()) { return GrQuad::Type::kPerspective; } // If 'pts' was formed by SkRect::toQuad() and not transformed further, it is safe to use the // quad type derived from 'matrix'. Otherwise don't waste any more time and assume kStandard // (most general 2D quad). if ((pts[0].fX == pts[3].fX && pts[1].fX == pts[2].fX) && (pts[0].fY == pts[1].fY && pts[2].fY == pts[3].fY)) { return quad_type_for_transformed_rect(matrix); } else { return GrQuad::Type::kGeneral; } } GrQuad GrQuad::MakeFromRect(const SkRect& rect, const SkMatrix& m) { V4f x, y, w; SkMatrix::TypeMask tm = m.getType(); Type type; if (tm <= (SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask)) { map_rect_translate_scale(rect, m, &x, &y); w = 1.f; type = Type::kAxisAligned; } else { map_rect_general(rect, m, &x, &y, &w); type = quad_type_for_transformed_rect(m); } return GrQuad(x, y, w, type); } GrQuad GrQuad::MakeFromSkQuad(const SkPoint pts[4], const SkMatrix& matrix) { V4f xs, ys; rearrange_sk_to_gr_points(pts, &xs, &ys); Type type = quad_type_for_points(pts, matrix); if (matrix.isIdentity()) { return GrQuad(xs, ys, 1.f, type); } else { V4f mx, my, mw; map_quad_general(xs, ys, matrix, &mx, &my, &mw); return GrQuad(mx, my, mw, type); } } bool GrQuad::aaHasEffectOnRect() const { SkASSERT(this->quadType() == Type::kAxisAligned); // If rect, ws must all be 1s so no need to divide return aa_affects_rect(fX[0], fY[0], fX[3], fY[3]); } bool GrQuad::asRect(SkRect* rect) const { if (this->quadType() != Type::kAxisAligned) { return false; } *rect = this->bounds(); // v0 at the geometric top-left is unique amongst axis-aligned vertex orders // (90, 180, 270 rotations or axis flips all move v0). return fX[0] == rect->fLeft && fY[0] == rect->fTop; }