/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/ops/GrAtlasTextOp.h" #include "include/core/SkPoint3.h" #include "include/private/GrRecordingContext.h" #include "src/core/SkMathPriv.h" #include "src/core/SkMatrixPriv.h" #include "src/core/SkStrikeCache.h" #include "src/gpu/GrCaps.h" #include "src/gpu/GrMemoryPool.h" #include "src/gpu/GrOpFlushState.h" #include "src/gpu/GrRecordingContextPriv.h" #include "src/gpu/GrResourceProvider.h" #include "src/gpu/effects/GrBitmapTextGeoProc.h" #include "src/gpu/effects/GrDistanceFieldGeoProc.h" #include "src/gpu/text/GrAtlasManager.h" #include "src/gpu/text/GrStrikeCache.h" /////////////////////////////////////////////////////////////////////////////////////////////////// std::unique_ptr GrAtlasTextOp::MakeBitmap(GrRecordingContext* context, GrPaint&& paint, GrMaskFormat maskFormat, int glyphCount, bool needsTransform) { GrOpMemoryPool* pool = context->priv().opMemoryPool(); std::unique_ptr op = pool->allocate(std::move(paint)); switch (maskFormat) { case kA8_GrMaskFormat: op->fMaskType = kGrayscaleCoverageMask_MaskType; break; case kA565_GrMaskFormat: op->fMaskType = kLCDCoverageMask_MaskType; break; case kARGB_GrMaskFormat: op->fMaskType = kColorBitmapMask_MaskType; break; } op->fNumGlyphs = glyphCount; op->fGeoCount = 1; op->fLuminanceColor = 0; op->fNeedsGlyphTransform = needsTransform; return op; } std::unique_ptr GrAtlasTextOp::MakeDistanceField( GrRecordingContext* context, GrPaint&& paint, int glyphCount, const GrDistanceFieldAdjustTable* distanceAdjustTable, bool useGammaCorrectDistanceTable, SkColor luminanceColor, const SkSurfaceProps& props, bool isAntiAliased, bool useLCD) { GrOpMemoryPool* pool = context->priv().opMemoryPool(); std::unique_ptr op = pool->allocate(std::move(paint)); bool isBGR = SkPixelGeometryIsBGR(props.pixelGeometry()); bool isLCD = useLCD && SkPixelGeometryIsH(props.pixelGeometry()); op->fMaskType = !isAntiAliased ? kAliasedDistanceField_MaskType : isLCD ? (isBGR ? kLCDBGRDistanceField_MaskType : kLCDDistanceField_MaskType) : kGrayscaleDistanceField_MaskType; op->fDistanceAdjustTable.reset(SkRef(distanceAdjustTable)); op->fUseGammaCorrectDistanceTable = useGammaCorrectDistanceTable; op->fLuminanceColor = luminanceColor; op->fNumGlyphs = glyphCount; op->fGeoCount = 1; return op; } static const int kDistanceAdjustLumShift = 5; void GrAtlasTextOp::init() { const Geometry& geo = fGeoData[0]; if (this->usesDistanceFields()) { bool isLCD = this->isLCD(); const SkMatrix& viewMatrix = geo.fViewMatrix; fDFGPFlags = viewMatrix.isSimilarity() ? kSimilarity_DistanceFieldEffectFlag : 0; fDFGPFlags |= viewMatrix.isScaleTranslate() ? kScaleOnly_DistanceFieldEffectFlag : 0; fDFGPFlags |= viewMatrix.hasPerspective() ? kPerspective_DistanceFieldEffectFlag : 0; fDFGPFlags |= fUseGammaCorrectDistanceTable ? kGammaCorrect_DistanceFieldEffectFlag : 0; fDFGPFlags |= (kAliasedDistanceField_MaskType == fMaskType) ? kAliased_DistanceFieldEffectFlag : 0; if (isLCD) { fDFGPFlags |= kUseLCD_DistanceFieldEffectFlag; fDFGPFlags |= (kLCDBGRDistanceField_MaskType == fMaskType) ? kBGR_DistanceFieldEffectFlag : 0; } fNeedsGlyphTransform = true; } SkRect bounds; geo.fBlob->computeSubRunBounds(&bounds, geo.fRun, geo.fSubRun, geo.fViewMatrix, geo.fX, geo.fY, fNeedsGlyphTransform); // We don't have tight bounds on the glyph paths in device space. For the purposes of bounds // we treat this as a set of non-AA rects rendered with a texture. this->setBounds(bounds, HasAABloat::kNo, IsZeroArea::kNo); } void GrAtlasTextOp::visitProxies(const VisitProxyFunc& func) const { fProcessors.visitProxies(func); } #ifdef SK_DEBUG SkString GrAtlasTextOp::dumpInfo() const { SkString str; for (int i = 0; i < fGeoCount; ++i) { str.appendf("%d: Color: 0x%08x Trans: %.2f,%.2f Runs: %d\n", i, fGeoData[i].fColor.toBytes_RGBA(), fGeoData[i].fX, fGeoData[i].fY, fGeoData[i].fBlob->runCountLimit()); } str += fProcessors.dumpProcessors(); str += INHERITED::dumpInfo(); return str; } #endif GrDrawOp::FixedFunctionFlags GrAtlasTextOp::fixedFunctionFlags() const { return FixedFunctionFlags::kNone; } GrProcessorSet::Analysis GrAtlasTextOp::finalize( const GrCaps& caps, const GrAppliedClip* clip, bool hasMixedSampledCoverage, GrClampType clampType) { GrProcessorAnalysisCoverage coverage; GrProcessorAnalysisColor color; if (kColorBitmapMask_MaskType == fMaskType) { color.setToUnknown(); } else { color.setToConstant(this->color()); } switch (fMaskType) { case kGrayscaleCoverageMask_MaskType: case kAliasedDistanceField_MaskType: case kGrayscaleDistanceField_MaskType: coverage = GrProcessorAnalysisCoverage::kSingleChannel; break; case kLCDCoverageMask_MaskType: case kLCDDistanceField_MaskType: case kLCDBGRDistanceField_MaskType: coverage = GrProcessorAnalysisCoverage::kLCD; break; case kColorBitmapMask_MaskType: coverage = GrProcessorAnalysisCoverage::kNone; break; } auto analysis = fProcessors.finalize( color, coverage, clip, &GrUserStencilSettings::kUnused, hasMixedSampledCoverage, caps, clampType, &fGeoData[0].fColor); fUsesLocalCoords = analysis.usesLocalCoords(); return analysis; } static void clip_quads(const SkIRect& clipRect, char* currVertex, const char* blobVertices, size_t vertexStride, int glyphCount) { for (int i = 0; i < glyphCount; ++i) { const SkPoint* blobPositionLT = reinterpret_cast(blobVertices); const SkPoint* blobPositionRB = reinterpret_cast(blobVertices + 3 * vertexStride); // positions for bitmap glyphs are pixel boundary aligned SkIRect positionRect = SkIRect::MakeLTRB(SkScalarRoundToInt(blobPositionLT->fX), SkScalarRoundToInt(blobPositionLT->fY), SkScalarRoundToInt(blobPositionRB->fX), SkScalarRoundToInt(blobPositionRB->fY)); if (clipRect.contains(positionRect)) { memcpy(currVertex, blobVertices, 4 * vertexStride); currVertex += 4 * vertexStride; } else { // Pull out some more data that we'll need. // In the LCD case the color will be garbage, but we'll overwrite it with the texcoords // and it avoids a lot of conditionals. auto color = *reinterpret_cast(blobVertices + sizeof(SkPoint)); size_t coordOffset = vertexStride - 2*sizeof(uint16_t); auto* blobCoordsLT = reinterpret_cast(blobVertices + coordOffset); auto* blobCoordsRB = reinterpret_cast(blobVertices + 3 * vertexStride + coordOffset); // Pull out the texel coordinates and texture index bits #ifdef SK_ENABLE_SMALL_PAGE uint16_t coordsRectL = blobCoordsLT[0] >> 2; uint16_t coordsRectT = blobCoordsLT[1] >> 2; uint16_t coordsRectR = blobCoordsRB[0] >> 2; uint16_t coordsRectB = blobCoordsRB[1] >> 2; uint16_t pageIndexX = blobCoordsLT[0] & 0x3; uint16_t pageIndexY = blobCoordsLT[1] & 0x3; #else uint16_t coordsRectL = blobCoordsLT[0] >> 1; uint16_t coordsRectT = blobCoordsLT[1] >> 1; uint16_t coordsRectR = blobCoordsRB[0] >> 1; uint16_t coordsRectB = blobCoordsRB[1] >> 1; uint16_t pageIndexX = blobCoordsLT[0] & 0x1; uint16_t pageIndexY = blobCoordsLT[1] & 0x1; #endif int positionRectWidth = positionRect.width(); int positionRectHeight = positionRect.height(); SkASSERT(positionRectWidth == (coordsRectR - coordsRectL)); SkASSERT(positionRectHeight == (coordsRectB - coordsRectT)); // Clip position and texCoords to the clipRect unsigned int delta; delta = SkTMin(SkTMax(clipRect.fLeft - positionRect.fLeft, 0), positionRectWidth); coordsRectL += delta; positionRect.fLeft += delta; delta = SkTMin(SkTMax(clipRect.fTop - positionRect.fTop, 0), positionRectHeight); coordsRectT += delta; positionRect.fTop += delta; delta = SkTMin(SkTMax(positionRect.fRight - clipRect.fRight, 0), positionRectWidth); coordsRectR -= delta; positionRect.fRight -= delta; delta = SkTMin(SkTMax(positionRect.fBottom - clipRect.fBottom, 0), positionRectHeight); coordsRectB -= delta; positionRect.fBottom -= delta; // Repack texel coordinates and index #ifdef SK_ENABLE_SMALL_PAGE coordsRectL = coordsRectL << 2 | pageIndexX; coordsRectT = coordsRectT << 2 | pageIndexY; coordsRectR = coordsRectR << 2 | pageIndexX; coordsRectB = coordsRectB << 2 | pageIndexY; #else coordsRectL = coordsRectL << 1 | pageIndexX; coordsRectT = coordsRectT << 1 | pageIndexY; coordsRectR = coordsRectR << 1 | pageIndexX; coordsRectB = coordsRectB << 1 | pageIndexY; #endif // Set new positions and coords SkPoint* currPosition = reinterpret_cast(currVertex); currPosition->fX = positionRect.fLeft; currPosition->fY = positionRect.fTop; *(reinterpret_cast(currVertex + sizeof(SkPoint))) = color; uint16_t* currCoords = reinterpret_cast(currVertex + coordOffset); currCoords[0] = coordsRectL; currCoords[1] = coordsRectT; currVertex += vertexStride; currPosition = reinterpret_cast(currVertex); currPosition->fX = positionRect.fLeft; currPosition->fY = positionRect.fBottom; *(reinterpret_cast(currVertex + sizeof(SkPoint))) = color; currCoords = reinterpret_cast(currVertex + coordOffset); currCoords[0] = coordsRectL; currCoords[1] = coordsRectB; currVertex += vertexStride; currPosition = reinterpret_cast(currVertex); currPosition->fX = positionRect.fRight; currPosition->fY = positionRect.fTop; *(reinterpret_cast(currVertex + sizeof(SkPoint))) = color; currCoords = reinterpret_cast(currVertex + coordOffset); currCoords[0] = coordsRectR; currCoords[1] = coordsRectT; currVertex += vertexStride; currPosition = reinterpret_cast(currVertex); currPosition->fX = positionRect.fRight; currPosition->fY = positionRect.fBottom; *(reinterpret_cast(currVertex + sizeof(SkPoint))) = color; currCoords = reinterpret_cast(currVertex + coordOffset); currCoords[0] = coordsRectR; currCoords[1] = coordsRectB; currVertex += vertexStride; } blobVertices += 4 * vertexStride; } } void GrAtlasTextOp::onPrepareDraws(Target* target) { auto resourceProvider = target->resourceProvider(); // if we have RGB, then we won't have any SkShaders so no need to use a localmatrix. // TODO actually only invert if we don't have RGBA SkMatrix localMatrix; if (this->usesLocalCoords() && !fGeoData[0].fViewMatrix.invert(&localMatrix)) { return; } GrAtlasManager* atlasManager = target->atlasManager(); GrStrikeCache* glyphCache = target->glyphCache(); GrMaskFormat maskFormat = this->maskFormat(); unsigned int numActiveProxies; const sk_sp* proxies = atlasManager->getProxies(maskFormat, &numActiveProxies); if (!proxies) { SkDebugf("Could not allocate backing texture for atlas\n"); return; } SkASSERT(proxies[0]); static constexpr int kMaxTextures = GrBitmapTextGeoProc::kMaxTextures; GR_STATIC_ASSERT(GrDistanceFieldA8TextGeoProc::kMaxTextures == kMaxTextures); GR_STATIC_ASSERT(GrDistanceFieldLCDTextGeoProc::kMaxTextures == kMaxTextures); auto fixedDynamicState = target->makeFixedDynamicState(kMaxTextures); for (unsigned i = 0; i < numActiveProxies; ++i) { fixedDynamicState->fPrimitiveProcessorTextures[i] = proxies[i].get(); } FlushInfo flushInfo; flushInfo.fFixedDynamicState = fixedDynamicState; bool vmPerspective = fGeoData[0].fViewMatrix.hasPerspective(); if (this->usesDistanceFields()) { flushInfo.fGeometryProcessor = this->setupDfProcessor(*target->caps().shaderCaps(), proxies, numActiveProxies); } else { GrSamplerState samplerState = fNeedsGlyphTransform ? GrSamplerState::ClampBilerp() : GrSamplerState::ClampNearest(); flushInfo.fGeometryProcessor = GrBitmapTextGeoProc::Make( *target->caps().shaderCaps(), this->color(), false, proxies, numActiveProxies, samplerState, maskFormat, localMatrix, vmPerspective); } flushInfo.fGlyphsToFlush = 0; size_t vertexStride = flushInfo.fGeometryProcessor->vertexStride(); int glyphCount = this->numGlyphs(); void* vertices = target->makeVertexSpace(vertexStride, glyphCount * kVerticesPerGlyph, &flushInfo.fVertexBuffer, &flushInfo.fVertexOffset); flushInfo.fIndexBuffer = resourceProvider->refQuadIndexBuffer(); if (!vertices || !flushInfo.fVertexBuffer) { SkDebugf("Could not allocate vertices\n"); return; } char* currVertex = reinterpret_cast(vertices); SkExclusiveStrikePtr autoGlyphCache; // each of these is a SubRun for (int i = 0; i < fGeoCount; i++) { const Geometry& args = fGeoData[i]; Blob* blob = args.fBlob; // TODO4F: Preserve float colors GrTextBlob::VertexRegenerator regenerator( resourceProvider, blob, args.fRun, args.fSubRun, args.fViewMatrix, args.fX, args.fY, args.fColor.toBytes_RGBA(), target->deferredUploadTarget(), glyphCache, atlasManager, &autoGlyphCache); bool done = false; while (!done) { GrTextBlob::VertexRegenerator::Result result; if (!regenerator.regenerate(&result)) { break; } done = result.fFinished; // Copy regenerated vertices from the blob to our vertex buffer. size_t vertexBytes = result.fGlyphsRegenerated * kVerticesPerGlyph * vertexStride; if (args.fClipRect.isEmpty()) { memcpy(currVertex, result.fFirstVertex, vertexBytes); } else { SkASSERT(!vmPerspective); clip_quads(args.fClipRect, currVertex, result.fFirstVertex, vertexStride, result.fGlyphsRegenerated); } if (fNeedsGlyphTransform && !args.fViewMatrix.isIdentity()) { // We always do the distance field view matrix transformation after copying rather // than during blob vertex generation time in the blob as handling successive // arbitrary transformations would be complicated and accumulate error. if (args.fViewMatrix.hasPerspective()) { auto* pos = reinterpret_cast(currVertex); SkMatrixPriv::MapHomogeneousPointsWithStride( args.fViewMatrix, pos, vertexStride, pos, vertexStride, result.fGlyphsRegenerated * kVerticesPerGlyph); } else { auto* pos = reinterpret_cast(currVertex); SkMatrixPriv::MapPointsWithStride( args.fViewMatrix, pos, vertexStride, result.fGlyphsRegenerated * kVerticesPerGlyph); } } flushInfo.fGlyphsToFlush += result.fGlyphsRegenerated; if (!result.fFinished) { this->flush(target, &flushInfo); } currVertex += vertexBytes; } } this->flush(target, &flushInfo); } void GrAtlasTextOp::onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) { flushState->executeDrawsAndUploadsForMeshDrawOp( this, chainBounds, std::move(fProcessors), GrPipeline::InputFlags::kNone); } void GrAtlasTextOp::flush(GrMeshDrawOp::Target* target, FlushInfo* flushInfo) const { if (!flushInfo->fGlyphsToFlush) { return; } auto atlasManager = target->atlasManager(); GrGeometryProcessor* gp = flushInfo->fGeometryProcessor.get(); GrMaskFormat maskFormat = this->maskFormat(); unsigned int numActiveProxies; const sk_sp* proxies = atlasManager->getProxies(maskFormat, &numActiveProxies); SkASSERT(proxies); if (gp->numTextureSamplers() != (int) numActiveProxies) { // During preparation the number of atlas pages has increased. // Update the proxies used in the GP to match. for (unsigned i = gp->numTextureSamplers(); i < numActiveProxies; ++i) { flushInfo->fFixedDynamicState->fPrimitiveProcessorTextures[i] = proxies[i].get(); } if (this->usesDistanceFields()) { if (this->isLCD()) { reinterpret_cast(gp)->addNewProxies( proxies, numActiveProxies, GrSamplerState::ClampBilerp()); } else { reinterpret_cast(gp)->addNewProxies( proxies, numActiveProxies, GrSamplerState::ClampBilerp()); } } else { GrSamplerState samplerState = fNeedsGlyphTransform ? GrSamplerState::ClampBilerp() : GrSamplerState::ClampNearest(); reinterpret_cast(gp)->addNewProxies(proxies, numActiveProxies, samplerState); } } int maxGlyphsPerDraw = static_cast(flushInfo->fIndexBuffer->size() / sizeof(uint16_t) / 6); GrMesh* mesh = target->allocMesh(GrPrimitiveType::kTriangles); mesh->setIndexedPatterned(flushInfo->fIndexBuffer, kIndicesPerGlyph, kVerticesPerGlyph, flushInfo->fGlyphsToFlush, maxGlyphsPerDraw); mesh->setVertexData(flushInfo->fVertexBuffer, flushInfo->fVertexOffset); target->recordDraw( flushInfo->fGeometryProcessor, mesh, 1, flushInfo->fFixedDynamicState, nullptr); flushInfo->fVertexOffset += kVerticesPerGlyph * flushInfo->fGlyphsToFlush; flushInfo->fGlyphsToFlush = 0; } GrOp::CombineResult GrAtlasTextOp::onCombineIfPossible(GrOp* t, const GrCaps& caps) { GrAtlasTextOp* that = t->cast(); if (fProcessors != that->fProcessors) { return CombineResult::kCannotCombine; } if (fMaskType != that->fMaskType) { return CombineResult::kCannotCombine; } const SkMatrix& thisFirstMatrix = fGeoData[0].fViewMatrix; const SkMatrix& thatFirstMatrix = that->fGeoData[0].fViewMatrix; if (this->usesLocalCoords() && !thisFirstMatrix.cheapEqualTo(thatFirstMatrix)) { return CombineResult::kCannotCombine; } if (fNeedsGlyphTransform != that->fNeedsGlyphTransform) { return CombineResult::kCannotCombine; } if (fNeedsGlyphTransform && (thisFirstMatrix.hasPerspective() != thatFirstMatrix.hasPerspective())) { return CombineResult::kCannotCombine; } if (this->usesDistanceFields()) { if (fDFGPFlags != that->fDFGPFlags) { return CombineResult::kCannotCombine; } if (fLuminanceColor != that->fLuminanceColor) { return CombineResult::kCannotCombine; } } else { if (kColorBitmapMask_MaskType == fMaskType && this->color() != that->color()) { return CombineResult::kCannotCombine; } } // Keep the batch vertex buffer size below 32K so we don't have to create a special one // We use the largest possible vertex size for this static const int kVertexSize = sizeof(SkPoint) + sizeof(SkColor) + 2 * sizeof(uint16_t); static const int kMaxGlyphs = 32768 / (kVerticesPerGlyph * kVertexSize); if (this->fNumGlyphs + that->fNumGlyphs > kMaxGlyphs) { return CombineResult::kCannotCombine; } fNumGlyphs += that->numGlyphs(); // Reallocate space for geo data if necessary and then import that geo's data. int newGeoCount = that->fGeoCount + fGeoCount; // We reallocate at a rate of 1.5x to try to get better total memory usage if (newGeoCount > fGeoDataAllocSize) { int newAllocSize = fGeoDataAllocSize + fGeoDataAllocSize / 2; while (newAllocSize < newGeoCount) { newAllocSize += newAllocSize / 2; } fGeoData.realloc(newAllocSize); fGeoDataAllocSize = newAllocSize; } // We steal the ref on the blobs from the other AtlasTextOp and set its count to 0 so that // it doesn't try to unref them. memcpy(&fGeoData[fGeoCount], that->fGeoData.get(), that->fGeoCount * sizeof(Geometry)); #ifdef SK_DEBUG for (int i = 0; i < that->fGeoCount; ++i) { that->fGeoData.get()[i].fBlob = (Blob*)0x1; } #endif that->fGeoCount = 0; fGeoCount = newGeoCount; return CombineResult::kMerged; } // TODO trying to figure out why lcd is so whack // (see comments in GrTextContext::ComputeCanonicalColor) sk_sp GrAtlasTextOp::setupDfProcessor(const GrShaderCaps& caps, const sk_sp* proxies, unsigned int numActiveProxies) const { bool isLCD = this->isLCD(); SkMatrix localMatrix = SkMatrix::I(); if (this->usesLocalCoords()) { // If this fails we'll just use I(). bool result = fGeoData[0].fViewMatrix.invert(&localMatrix); (void)result; } // see if we need to create a new effect if (isLCD) { float redCorrection = fDistanceAdjustTable->getAdjustment( SkColorGetR(fLuminanceColor) >> kDistanceAdjustLumShift, fUseGammaCorrectDistanceTable); float greenCorrection = fDistanceAdjustTable->getAdjustment( SkColorGetG(fLuminanceColor) >> kDistanceAdjustLumShift, fUseGammaCorrectDistanceTable); float blueCorrection = fDistanceAdjustTable->getAdjustment( SkColorGetB(fLuminanceColor) >> kDistanceAdjustLumShift, fUseGammaCorrectDistanceTable); GrDistanceFieldLCDTextGeoProc::DistanceAdjust widthAdjust = GrDistanceFieldLCDTextGeoProc::DistanceAdjust::Make( redCorrection, greenCorrection, blueCorrection); return GrDistanceFieldLCDTextGeoProc::Make(caps, proxies, numActiveProxies, GrSamplerState::ClampBilerp(), widthAdjust, fDFGPFlags, localMatrix); } else { #ifdef SK_GAMMA_APPLY_TO_A8 float correction = 0; if (kAliasedDistanceField_MaskType != fMaskType) { U8CPU lum = SkColorSpaceLuminance::computeLuminance(SK_GAMMA_EXPONENT, fLuminanceColor); correction = fDistanceAdjustTable->getAdjustment(lum >> kDistanceAdjustLumShift, fUseGammaCorrectDistanceTable); } return GrDistanceFieldA8TextGeoProc::Make(caps, proxies, numActiveProxies, GrSamplerState::ClampBilerp(), correction, fDFGPFlags, localMatrix); #else return GrDistanceFieldA8TextGeoProc::Make(caps, proxies, numActiveProxies, GrSamplerState::ClampBilerp(), fDFGPFlags, localMatrix); #endif } }