/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/vk/GrVkGpu.h" #include "include/gpu/GrBackendSemaphore.h" #include "include/gpu/GrBackendSurface.h" #include "include/gpu/GrContextOptions.h" #include "include/private/SkTo.h" #include "src/core/SkConvertPixels.h" #include "src/core/SkMipMap.h" #include "src/gpu/GrContextPriv.h" #include "src/gpu/GrDataUtils.h" #include "src/gpu/GrGeometryProcessor.h" #include "src/gpu/GrGpuResourceCacheAccess.h" #include "src/gpu/GrMesh.h" #include "src/gpu/GrPipeline.h" #include "src/gpu/GrRenderTargetContext.h" #include "src/gpu/GrRenderTargetPriv.h" #include "src/gpu/GrTexturePriv.h" #include "src/gpu/SkGpuDevice.h" #include "src/gpu/SkGr.h" #include "src/gpu/vk/GrVkAMDMemoryAllocator.h" #include "src/gpu/vk/GrVkCommandBuffer.h" #include "src/gpu/vk/GrVkCommandPool.h" #include "src/gpu/vk/GrVkGpuCommandBuffer.h" #include "src/gpu/vk/GrVkImage.h" #include "src/gpu/vk/GrVkIndexBuffer.h" #include "src/gpu/vk/GrVkInterface.h" #include "src/gpu/vk/GrVkMemory.h" #include "src/gpu/vk/GrVkPipeline.h" #include "src/gpu/vk/GrVkPipelineState.h" #include "src/gpu/vk/GrVkRenderPass.h" #include "src/gpu/vk/GrVkResourceProvider.h" #include "src/gpu/vk/GrVkSemaphore.h" #include "src/gpu/vk/GrVkTexture.h" #include "src/gpu/vk/GrVkTextureRenderTarget.h" #include "src/gpu/vk/GrVkTransferBuffer.h" #include "src/gpu/vk/GrVkVertexBuffer.h" #include "src/image/SkImage_Gpu.h" #include "src/image/SkSurface_Gpu.h" #include "src/sksl/SkSLCompiler.h" #include "include/gpu/vk/GrVkExtensions.h" #include "include/gpu/vk/GrVkTypes.h" #include #if !defined(SK_BUILD_FOR_WIN) #include #endif // !defined(SK_BUILD_FOR_WIN) #if defined(SK_BUILD_FOR_WIN) && defined(SK_DEBUG) #include "src/core/SkLeanWindows.h" #endif #define VK_CALL(X) GR_VK_CALL(this->vkInterface(), X) #define VK_CALL_RET(RET, X) GR_VK_CALL_RET(this->vkInterface(), RET, X) #define VK_CALL_ERRCHECK(X) GR_VK_CALL_ERRCHECK(this->vkInterface(), X) sk_sp GrVkGpu::Make(const GrVkBackendContext& backendContext, const GrContextOptions& options, GrContext* context) { if (backendContext.fInstance == VK_NULL_HANDLE || backendContext.fPhysicalDevice == VK_NULL_HANDLE || backendContext.fDevice == VK_NULL_HANDLE || backendContext.fQueue == VK_NULL_HANDLE) { return nullptr; } if (!backendContext.fGetProc) { return nullptr; } PFN_vkEnumerateInstanceVersion localEnumerateInstanceVersion = reinterpret_cast( backendContext.fGetProc("vkEnumerateInstanceVersion", VK_NULL_HANDLE, VK_NULL_HANDLE)); uint32_t instanceVersion = 0; if (!localEnumerateInstanceVersion) { instanceVersion = VK_MAKE_VERSION(1, 0, 0); } else { VkResult err = localEnumerateInstanceVersion(&instanceVersion); if (err) { SkDebugf("Failed to enumerate instance version. Err: %d\n", err); return nullptr; } } PFN_vkGetPhysicalDeviceProperties localGetPhysicalDeviceProperties = reinterpret_cast( backendContext.fGetProc("vkGetPhysicalDeviceProperties", backendContext.fInstance, VK_NULL_HANDLE)); if (!localGetPhysicalDeviceProperties) { return nullptr; } VkPhysicalDeviceProperties physDeviceProperties; localGetPhysicalDeviceProperties(backendContext.fPhysicalDevice, &physDeviceProperties); uint32_t physDevVersion = physDeviceProperties.apiVersion; uint32_t apiVersion = backendContext.fMaxAPIVersion ? backendContext.fMaxAPIVersion : instanceVersion; instanceVersion = SkTMin(instanceVersion, apiVersion); physDevVersion = SkTMin(physDevVersion, apiVersion); sk_sp interface; if (backendContext.fVkExtensions) { interface.reset(new GrVkInterface(backendContext.fGetProc, backendContext.fInstance, backendContext.fDevice, instanceVersion, physDevVersion, backendContext.fVkExtensions)); if (!interface->validate(instanceVersion, physDevVersion, backendContext.fVkExtensions)) { return nullptr; } } else { GrVkExtensions extensions; // The only extension flag that may effect the vulkan backend is the swapchain extension. We // need to know if this is enabled to know if we can transition to a present layout when // flushing a surface. if (backendContext.fExtensions & kKHR_swapchain_GrVkExtensionFlag) { const char* swapChainExtName = VK_KHR_SWAPCHAIN_EXTENSION_NAME; extensions.init(backendContext.fGetProc, backendContext.fInstance, backendContext.fPhysicalDevice, 0, nullptr, 1, &swapChainExtName); } interface.reset(new GrVkInterface(backendContext.fGetProc, backendContext.fInstance, backendContext.fDevice, instanceVersion, physDevVersion, &extensions)); if (!interface->validate(instanceVersion, physDevVersion, &extensions)) { return nullptr; } } sk_sp vkGpu(new GrVkGpu(context, options, backendContext, interface, instanceVersion, physDevVersion)); if (backendContext.fProtectedContext == GrProtected::kYes && !vkGpu->vkCaps().supportsProtectedMemory()) { return nullptr; } return vkGpu; } //////////////////////////////////////////////////////////////////////////////// GrVkGpu::GrVkGpu(GrContext* context, const GrContextOptions& options, const GrVkBackendContext& backendContext, sk_sp interface, uint32_t instanceVersion, uint32_t physicalDeviceVersion) : INHERITED(context) , fInterface(std::move(interface)) , fMemoryAllocator(backendContext.fMemoryAllocator) , fInstance(backendContext.fInstance) , fPhysicalDevice(backendContext.fPhysicalDevice) , fDevice(backendContext.fDevice) , fQueue(backendContext.fQueue) , fQueueIndex(backendContext.fGraphicsQueueIndex) , fResourceProvider(this) , fDisconnected(false) , fProtectedContext(backendContext.fProtectedContext) { SkASSERT(!backendContext.fOwnsInstanceAndDevice); if (!fMemoryAllocator) { // We were not given a memory allocator at creation fMemoryAllocator.reset(new GrVkAMDMemoryAllocator(backendContext.fPhysicalDevice, fDevice, fInterface)); } fCompiler = new SkSL::Compiler(); if (backendContext.fDeviceFeatures2) { fVkCaps.reset(new GrVkCaps(options, this->vkInterface(), backendContext.fPhysicalDevice, *backendContext.fDeviceFeatures2, instanceVersion, physicalDeviceVersion, *backendContext.fVkExtensions, fProtectedContext)); } else if (backendContext.fDeviceFeatures) { VkPhysicalDeviceFeatures2 features2; features2.pNext = nullptr; features2.features = *backendContext.fDeviceFeatures; fVkCaps.reset(new GrVkCaps(options, this->vkInterface(), backendContext.fPhysicalDevice, features2, instanceVersion, physicalDeviceVersion, *backendContext.fVkExtensions, fProtectedContext)); } else { VkPhysicalDeviceFeatures2 features; memset(&features, 0, sizeof(VkPhysicalDeviceFeatures2)); features.pNext = nullptr; if (backendContext.fFeatures & kGeometryShader_GrVkFeatureFlag) { features.features.geometryShader = true; } if (backendContext.fFeatures & kDualSrcBlend_GrVkFeatureFlag) { features.features.dualSrcBlend = true; } if (backendContext.fFeatures & kSampleRateShading_GrVkFeatureFlag) { features.features.sampleRateShading = true; } GrVkExtensions extensions; // The only extension flag that may effect the vulkan backend is the swapchain extension. We // need to know if this is enabled to know if we can transition to a present layout when // flushing a surface. if (backendContext.fExtensions & kKHR_swapchain_GrVkExtensionFlag) { const char* swapChainExtName = VK_KHR_SWAPCHAIN_EXTENSION_NAME; extensions.init(backendContext.fGetProc, backendContext.fInstance, backendContext.fPhysicalDevice, 0, nullptr, 1, &swapChainExtName); } fVkCaps.reset(new GrVkCaps(options, this->vkInterface(), backendContext.fPhysicalDevice, features, instanceVersion, physicalDeviceVersion, extensions, fProtectedContext)); } fCaps.reset(SkRef(fVkCaps.get())); VK_CALL(GetPhysicalDeviceProperties(backendContext.fPhysicalDevice, &fPhysDevProps)); VK_CALL(GetPhysicalDeviceMemoryProperties(backendContext.fPhysicalDevice, &fPhysDevMemProps)); fResourceProvider.init(); fCmdPool = fResourceProvider.findOrCreateCommandPool(); fCurrentCmdBuffer = fCmdPool->getPrimaryCommandBuffer(); SkASSERT(fCurrentCmdBuffer); fCurrentCmdBuffer->begin(this); } void GrVkGpu::destroyResources() { if (fCmdPool) { fCmdPool->getPrimaryCommandBuffer()->end(this); fCmdPool->close(); } // wait for all commands to finish VkResult res = VK_CALL(QueueWaitIdle(fQueue)); // On windows, sometimes calls to QueueWaitIdle return before actually signalling the fences // on the command buffers even though they have completed. This causes an assert to fire when // destroying the command buffers. Currently this ony seems to happen on windows, so we add a // sleep to make sure the fence signals. #ifdef SK_DEBUG if (this->vkCaps().mustSleepOnTearDown()) { #if defined(SK_BUILD_FOR_WIN) Sleep(10); // In milliseconds #else sleep(1); // In seconds #endif } #endif #ifdef SK_DEBUG SkASSERT(VK_SUCCESS == res || VK_ERROR_DEVICE_LOST == res); #endif if (fCmdPool) { fCmdPool->unref(this); fCmdPool = nullptr; } for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) { fSemaphoresToWaitOn[i]->unref(this); } fSemaphoresToWaitOn.reset(); for (int i = 0; i < fSemaphoresToSignal.count(); ++i) { fSemaphoresToSignal[i]->unref(this); } fSemaphoresToSignal.reset(); // must call this just before we destroy the command pool and VkDevice fResourceProvider.destroyResources(VK_ERROR_DEVICE_LOST == res); fMemoryAllocator.reset(); fQueue = VK_NULL_HANDLE; fDevice = VK_NULL_HANDLE; fInstance = VK_NULL_HANDLE; } GrVkGpu::~GrVkGpu() { if (!fDisconnected) { this->destroyResources(); } delete fCompiler; } void GrVkGpu::disconnect(DisconnectType type) { INHERITED::disconnect(type); if (!fDisconnected) { if (DisconnectType::kCleanup == type) { this->destroyResources(); } else { if (fCmdPool) { fCmdPool->unrefAndAbandon(); fCmdPool = nullptr; } for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) { fSemaphoresToWaitOn[i]->unrefAndAbandon(); } for (int i = 0; i < fSemaphoresToSignal.count(); ++i) { fSemaphoresToSignal[i]->unrefAndAbandon(); } // must call this just before we destroy the command pool and VkDevice fResourceProvider.abandonResources(); fMemoryAllocator.reset(); } fSemaphoresToWaitOn.reset(); fSemaphoresToSignal.reset(); fCurrentCmdBuffer = nullptr; fDisconnected = true; } } /////////////////////////////////////////////////////////////////////////////// GrGpuRTCommandBuffer* GrVkGpu::getCommandBuffer( GrRenderTarget* rt, GrSurfaceOrigin origin, const SkRect& bounds, const GrGpuRTCommandBuffer::LoadAndStoreInfo& colorInfo, const GrGpuRTCommandBuffer::StencilLoadAndStoreInfo& stencilInfo) { if (!fCachedRTCommandBuffer) { fCachedRTCommandBuffer.reset(new GrVkGpuRTCommandBuffer(this)); } fCachedRTCommandBuffer->set(rt, origin, colorInfo, stencilInfo); return fCachedRTCommandBuffer.get(); } GrGpuTextureCommandBuffer* GrVkGpu::getCommandBuffer(GrTexture* texture, GrSurfaceOrigin origin) { if (!fCachedTexCommandBuffer) { fCachedTexCommandBuffer.reset(new GrVkGpuTextureCommandBuffer(this)); } fCachedTexCommandBuffer->set(texture, origin); return fCachedTexCommandBuffer.get(); } void GrVkGpu::submitCommandBuffer(SyncQueue sync, GrGpuFinishedProc finishedProc, GrGpuFinishedContext finishedContext) { TRACE_EVENT0("skia.gpu", TRACE_FUNC); SkASSERT(fCurrentCmdBuffer); SkASSERT(!fCachedRTCommandBuffer || !fCachedRTCommandBuffer->isActive()); SkASSERT(!fCachedTexCommandBuffer || !fCachedTexCommandBuffer->isActive()); if (!fCurrentCmdBuffer->hasWork() && kForce_SyncQueue != sync && !fSemaphoresToSignal.count() && !fSemaphoresToWaitOn.count()) { SkASSERT(fDrawables.empty()); fResourceProvider.checkCommandBuffers(); if (finishedProc) { fResourceProvider.addFinishedProcToActiveCommandBuffers(finishedProc, finishedContext); } return; } fCurrentCmdBuffer->end(this); fCmdPool->close(); fCurrentCmdBuffer->submitToQueue(this, fQueue, sync, fSemaphoresToSignal, fSemaphoresToWaitOn); if (finishedProc) { // Make sure this is called after closing the current command pool fResourceProvider.addFinishedProcToActiveCommandBuffers(finishedProc, finishedContext); } // We must delete and drawables that have been waitint till submit for us to destroy. fDrawables.reset(); for (int i = 0; i < fSemaphoresToWaitOn.count(); ++i) { fSemaphoresToWaitOn[i]->unref(this); } fSemaphoresToWaitOn.reset(); for (int i = 0; i < fSemaphoresToSignal.count(); ++i) { fSemaphoresToSignal[i]->unref(this); } fSemaphoresToSignal.reset(); // Release old command pool and create a new one fCmdPool->unref(this); fResourceProvider.checkCommandBuffers(); fCmdPool = fResourceProvider.findOrCreateCommandPool(); fCurrentCmdBuffer = fCmdPool->getPrimaryCommandBuffer(); fCurrentCmdBuffer->begin(this); } /////////////////////////////////////////////////////////////////////////////// sk_sp GrVkGpu::onCreateBuffer(size_t size, GrGpuBufferType type, GrAccessPattern accessPattern, const void* data) { sk_sp buff; switch (type) { case GrGpuBufferType::kVertex: SkASSERT(kDynamic_GrAccessPattern == accessPattern || kStatic_GrAccessPattern == accessPattern); buff = GrVkVertexBuffer::Make(this, size, kDynamic_GrAccessPattern == accessPattern); break; case GrGpuBufferType::kIndex: SkASSERT(kDynamic_GrAccessPattern == accessPattern || kStatic_GrAccessPattern == accessPattern); buff = GrVkIndexBuffer::Make(this, size, kDynamic_GrAccessPattern == accessPattern); break; case GrGpuBufferType::kXferCpuToGpu: SkASSERT(kDynamic_GrAccessPattern == accessPattern || kStream_GrAccessPattern == accessPattern); buff = GrVkTransferBuffer::Make(this, size, GrVkBuffer::kCopyRead_Type); break; case GrGpuBufferType::kXferGpuToCpu: SkASSERT(kDynamic_GrAccessPattern == accessPattern || kStream_GrAccessPattern == accessPattern); buff = GrVkTransferBuffer::Make(this, size, GrVkBuffer::kCopyWrite_Type); break; default: SK_ABORT("Unknown buffer type."); } if (data && buff) { buff->updateData(data, size); } return buff; } bool GrVkGpu::onWritePixels(GrSurface* surface, int left, int top, int width, int height, GrColorType surfaceColorType, GrColorType srcColorType, const GrMipLevel texels[], int mipLevelCount) { GrVkTexture* vkTex = static_cast(surface->asTexture()); if (!vkTex) { return false; } // Make sure we have at least the base level if (!mipLevelCount || !texels[0].fPixels) { return false; } SkASSERT(!GrVkFormatIsCompressed(vkTex->imageFormat())); bool success = false; bool linearTiling = vkTex->isLinearTiled(); if (linearTiling) { if (mipLevelCount > 1) { SkDebugf("Can't upload mipmap data to linear tiled texture"); return false; } if (VK_IMAGE_LAYOUT_PREINITIALIZED != vkTex->currentLayout()) { // Need to change the layout to general in order to perform a host write vkTex->setImageLayout(this, VK_IMAGE_LAYOUT_GENERAL, VK_ACCESS_HOST_WRITE_BIT, VK_PIPELINE_STAGE_HOST_BIT, false); this->submitCommandBuffer(kForce_SyncQueue); } success = this->uploadTexDataLinear(vkTex, left, top, width, height, srcColorType, texels[0].fPixels, texels[0].fRowBytes); } else { SkASSERT(mipLevelCount <= vkTex->texturePriv().maxMipMapLevel() + 1); success = this->uploadTexDataOptimal(vkTex, left, top, width, height, srcColorType, texels, mipLevelCount); } return success; } bool GrVkGpu::onTransferPixelsTo(GrTexture* texture, int left, int top, int width, int height, GrColorType surfaceColorType, GrColorType bufferColorType, GrGpuBuffer* transferBuffer, size_t bufferOffset, size_t rowBytes) { // Vulkan only supports offsets that are both 4-byte aligned and aligned to a pixel. if ((bufferOffset & 0x3) || (bufferOffset % GrColorTypeBytesPerPixel(bufferColorType))) { return false; } GrVkTexture* vkTex = static_cast(texture); if (!vkTex) { return false; } // Can't transfer compressed data SkASSERT(!GrVkFormatIsCompressed(vkTex->imageFormat())); GrVkTransferBuffer* vkBuffer = static_cast(transferBuffer); if (!vkBuffer) { return false; } SkDEBUGCODE( SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height); SkIRect bounds = SkIRect::MakeWH(texture->width(), texture->height()); SkASSERT(bounds.contains(subRect)); ) size_t bpp = GrColorTypeBytesPerPixel(bufferColorType); // Set up copy region VkBufferImageCopy region; memset(®ion, 0, sizeof(VkBufferImageCopy)); region.bufferOffset = bufferOffset; region.bufferRowLength = (uint32_t)(rowBytes/bpp); region.bufferImageHeight = 0; region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; region.imageOffset = { left, top, 0 }; region.imageExtent = { (uint32_t)width, (uint32_t)height, 1 }; // Change layout of our target so it can be copied to vkTex->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); // Copy the buffer to the image fCurrentCmdBuffer->copyBufferToImage(this, vkBuffer, vkTex, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion); vkTex->texturePriv().markMipMapsDirty(); return true; } bool GrVkGpu::onTransferPixelsFrom(GrSurface* surface, int left, int top, int width, int height, GrColorType surfaceColorType, GrColorType bufferColorType, GrGpuBuffer* transferBuffer, size_t offset) { SkASSERT(surface); SkASSERT(transferBuffer); if (fProtectedContext == GrProtected::kYes) { return false; } GrVkTransferBuffer* vkBuffer = static_cast(transferBuffer); GrVkImage* srcImage; if (GrVkRenderTarget* rt = static_cast(surface->asRenderTarget())) { // Reading from render targets that wrap a secondary command buffer is not allowed since // it would require us to know the VkImage, which we don't have, as well as need us to // stop and start the VkRenderPass which we don't have access to. if (rt->wrapsSecondaryCommandBuffer()) { return false; } // resolve the render target if necessary switch (rt->getResolveType()) { case GrVkRenderTarget::kCantResolve_ResolveType: return false; case GrVkRenderTarget::kAutoResolves_ResolveType: break; case GrVkRenderTarget::kCanResolve_ResolveType: this->resolveRenderTargetNoFlush(rt); break; default: SK_ABORT("Unknown resolve type"); } srcImage = rt; } else { srcImage = static_cast(surface->asTexture()); } // Set up copy region VkBufferImageCopy region; memset(®ion, 0, sizeof(VkBufferImageCopy)); region.bufferOffset = offset; region.bufferRowLength = width; region.bufferImageHeight = 0; region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; region.imageOffset = { left, top, 0 }; region.imageExtent = { (uint32_t)width, (uint32_t)height, 1 }; srcImage->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); fCurrentCmdBuffer->copyImageToBuffer(this, srcImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, vkBuffer, 1, ®ion); // Make sure the copy to buffer has finished. vkBuffer->addMemoryBarrier(this, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, false); return true; } void GrVkGpu::resolveImage(GrSurface* dst, GrVkRenderTarget* src, const SkIRect& srcRect, const SkIPoint& dstPoint) { SkASSERT(dst); SkASSERT(src && src->numSamples() > 1 && src->msaaImage()); VkImageResolve resolveInfo; resolveInfo.srcSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1}; resolveInfo.srcOffset = {srcRect.fLeft, srcRect.fTop, 0}; resolveInfo.dstSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1}; resolveInfo.dstOffset = {dstPoint.fX, dstPoint.fY, 0}; resolveInfo.extent = {(uint32_t)srcRect.width(), (uint32_t)srcRect.height(), 1}; GrVkImage* dstImage; GrRenderTarget* dstRT = dst->asRenderTarget(); if (dstRT) { GrVkRenderTarget* vkRT = static_cast(dstRT); dstImage = vkRT; } else { SkASSERT(dst->asTexture()); dstImage = static_cast(dst->asTexture()); } dstImage->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); src->msaaImage()->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); fCurrentCmdBuffer->resolveImage(this, *src->msaaImage(), *dstImage, 1, &resolveInfo); } void GrVkGpu::internalResolveRenderTarget(GrRenderTarget* target, bool requiresSubmit) { if (target->needsResolve()) { SkASSERT(target->numSamples() > 1); GrVkRenderTarget* rt = static_cast(target); SkASSERT(rt->msaaImage()); const SkIRect& srcRect = rt->getResolveRect(); this->resolveImage(target, rt, srcRect, SkIPoint::Make(srcRect.fLeft, srcRect.fTop)); rt->flagAsResolved(); if (requiresSubmit) { this->submitCommandBuffer(kSkip_SyncQueue); } } } bool GrVkGpu::uploadTexDataLinear(GrVkTexture* tex, int left, int top, int width, int height, GrColorType dataColorType, const void* data, size_t rowBytes) { SkASSERT(data); SkASSERT(tex->isLinearTiled()); SkDEBUGCODE( SkIRect subRect = SkIRect::MakeXYWH(left, top, width, height); SkIRect bounds = SkIRect::MakeWH(tex->width(), tex->height()); SkASSERT(bounds.contains(subRect)); ) size_t bpp = GrColorTypeBytesPerPixel(dataColorType); size_t trimRowBytes = width * bpp; SkASSERT(VK_IMAGE_LAYOUT_PREINITIALIZED == tex->currentLayout() || VK_IMAGE_LAYOUT_GENERAL == tex->currentLayout()); const VkImageSubresource subres = { VK_IMAGE_ASPECT_COLOR_BIT, 0, // mipLevel 0, // arraySlice }; VkSubresourceLayout layout; const GrVkInterface* interface = this->vkInterface(); GR_VK_CALL(interface, GetImageSubresourceLayout(fDevice, tex->image(), &subres, &layout)); const GrVkAlloc& alloc = tex->alloc(); if (VK_NULL_HANDLE == alloc.fMemory) { return false; } VkDeviceSize offset = top * layout.rowPitch + left * bpp; VkDeviceSize size = height*layout.rowPitch; SkASSERT(size + offset <= alloc.fSize); void* mapPtr = GrVkMemory::MapAlloc(this, alloc); if (!mapPtr) { return false; } mapPtr = reinterpret_cast(mapPtr) + offset; SkRectMemcpy(mapPtr, static_cast(layout.rowPitch), data, rowBytes, trimRowBytes, height); GrVkMemory::FlushMappedAlloc(this, alloc, offset, size); GrVkMemory::UnmapAlloc(this, alloc); return true; } bool GrVkGpu::uploadTexDataOptimal(GrVkTexture* tex, int left, int top, int width, int height, GrColorType dataColorType, const GrMipLevel texels[], int mipLevelCount) { SkASSERT(!tex->isLinearTiled()); // The assumption is either that we have no mipmaps, or that our rect is the entire texture SkASSERT(1 == mipLevelCount || (0 == left && 0 == top && width == tex->width() && height == tex->height())); // We assume that if the texture has mip levels, we either upload to all the levels or just the // first. SkASSERT(1 == mipLevelCount || mipLevelCount == (tex->texturePriv().maxMipMapLevel() + 1)); if (width == 0 || height == 0) { return false; } if (GrPixelConfigToColorType(tex->config()) != dataColorType) { return false; } // For RGB_888x src data we are uploading it first to an RGBA texture and then copying it to the // dst RGB texture. Thus we do not upload mip levels for that. if (dataColorType == GrColorType::kRGB_888x && tex->imageFormat() == VK_FORMAT_R8G8B8_UNORM) { SkASSERT(tex->config() == kRGB_888_GrPixelConfig); // First check that we'll be able to do the copy to the to the R8G8B8 image in the end via a // blit or draw. if (!this->vkCaps().formatCanBeDstofBlit(VK_FORMAT_R8G8B8_UNORM, tex->isLinearTiled()) && !this->vkCaps().isFormatRenderable(VK_FORMAT_R8G8B8_UNORM, 1)) { return false; } mipLevelCount = 1; } SkASSERT(this->vkCaps().isVkFormatTexturable(tex->imageFormat())); size_t bpp = GrColorTypeBytesPerPixel(dataColorType); // texels is const. // But we may need to adjust the fPixels ptr based on the copyRect, or fRowBytes. // Because of this we need to make a non-const shallow copy of texels. SkAutoTMalloc texelsShallowCopy; texelsShallowCopy.reset(mipLevelCount); memcpy(texelsShallowCopy.get(), texels, mipLevelCount*sizeof(GrMipLevel)); SkTArray individualMipOffsets(mipLevelCount); individualMipOffsets.push_back(0); size_t combinedBufferSize = width * bpp * height; int currentWidth = width; int currentHeight = height; if (!texelsShallowCopy[0].fPixels) { combinedBufferSize = 0; } // The alignment must be at least 4 bytes and a multiple of the bytes per pixel of the image // config. This works with the assumption that the bytes in pixel config is always a power of 2. SkASSERT((bpp & (bpp - 1)) == 0); const size_t alignmentMask = 0x3 | (bpp - 1); for (int currentMipLevel = 1; currentMipLevel < mipLevelCount; currentMipLevel++) { currentWidth = SkTMax(1, currentWidth/2); currentHeight = SkTMax(1, currentHeight/2); if (texelsShallowCopy[currentMipLevel].fPixels) { const size_t trimmedSize = currentWidth * bpp * currentHeight; const size_t alignmentDiff = combinedBufferSize & alignmentMask; if (alignmentDiff != 0) { combinedBufferSize += alignmentMask - alignmentDiff + 1; } individualMipOffsets.push_back(combinedBufferSize); combinedBufferSize += trimmedSize; } else { individualMipOffsets.push_back(0); } } if (0 == combinedBufferSize) { // We don't actually have any data to upload so just return success return true; } // allocate buffer to hold our mip data sk_sp transferBuffer = GrVkTransferBuffer::Make(this, combinedBufferSize, GrVkBuffer::kCopyRead_Type); if (!transferBuffer) { return false; } int uploadLeft = left; int uploadTop = top; GrVkTexture* uploadTexture = tex; // For uploading RGB_888x data to an R8G8B8_UNORM texture we must first upload the data to an // R8G8B8A8_UNORM image and then copy it. sk_sp copyTexture; if (dataColorType == GrColorType::kRGB_888x && tex->imageFormat() == VK_FORMAT_R8G8B8_UNORM) { bool dstHasYcbcr = tex->ycbcrConversionInfo().isValid(); if (!this->vkCaps().canCopyAsBlit(tex->imageFormat(), 1, false, dstHasYcbcr, VK_FORMAT_R8G8B8A8_UNORM, 1, false, false)) { return false; } GrSurfaceDesc surfDesc; surfDesc.fWidth = width; surfDesc.fHeight = height; surfDesc.fConfig = kRGBA_8888_GrPixelConfig; VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; GrVkImage::ImageDesc imageDesc; imageDesc.fImageType = VK_IMAGE_TYPE_2D; imageDesc.fFormat = VK_FORMAT_R8G8B8A8_UNORM; imageDesc.fWidth = width; imageDesc.fHeight = height; imageDesc.fLevels = 1; imageDesc.fSamples = 1; imageDesc.fImageTiling = VK_IMAGE_TILING_OPTIMAL; imageDesc.fUsageFlags = usageFlags; imageDesc.fMemProps = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; copyTexture = GrVkTexture::MakeNewTexture(this, SkBudgeted::kYes, surfDesc, imageDesc, GrMipMapsStatus::kNotAllocated); if (!copyTexture) { return false; } uploadTexture = copyTexture.get(); uploadLeft = 0; uploadTop = 0; } char* buffer = (char*) transferBuffer->map(); SkTArray regions(mipLevelCount); currentWidth = width; currentHeight = height; int layerHeight = uploadTexture->height(); for (int currentMipLevel = 0; currentMipLevel < mipLevelCount; currentMipLevel++) { if (texelsShallowCopy[currentMipLevel].fPixels) { SkASSERT(1 == mipLevelCount || currentHeight == layerHeight); const size_t trimRowBytes = currentWidth * bpp; const size_t rowBytes = texelsShallowCopy[currentMipLevel].fRowBytes; // copy data into the buffer, skipping the trailing bytes char* dst = buffer + individualMipOffsets[currentMipLevel]; const char* src = (const char*)texelsShallowCopy[currentMipLevel].fPixels; SkRectMemcpy(dst, trimRowBytes, src, rowBytes, trimRowBytes, currentHeight); VkBufferImageCopy& region = regions.push_back(); memset(®ion, 0, sizeof(VkBufferImageCopy)); region.bufferOffset = transferBuffer->offset() + individualMipOffsets[currentMipLevel]; region.bufferRowLength = currentWidth; region.bufferImageHeight = currentHeight; region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, SkToU32(currentMipLevel), 0, 1 }; region.imageOffset = {uploadLeft, uploadTop, 0}; region.imageExtent = { (uint32_t)currentWidth, (uint32_t)currentHeight, 1 }; } currentWidth = SkTMax(1, currentWidth/2); currentHeight = SkTMax(1, currentHeight/2); layerHeight = currentHeight; } // no need to flush non-coherent memory, unmap will do that for us transferBuffer->unmap(); // Change layout of our target so it can be copied to uploadTexture->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); // Copy the buffer to the image fCurrentCmdBuffer->copyBufferToImage(this, transferBuffer.get(), uploadTexture, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, regions.count(), regions.begin()); // If we copied the data into a temporary image first, copy that image into our main texture // now. if (copyTexture.get()) { SkASSERT(dataColorType == GrColorType::kRGB_888x); SkAssertResult(this->copySurface(tex, copyTexture.get(), SkIRect::MakeWH(width, height), SkIPoint::Make(left, top), false)); } if (1 == mipLevelCount) { tex->texturePriv().markMipMapsDirty(); } return true; } // It's probably possible to roll this into uploadTexDataOptimal, // but for now it's easier to maintain as a separate entity. bool GrVkGpu::uploadTexDataCompressed(GrVkTexture* tex, int left, int top, int width, int height, SkImage::CompressionType compressionType, const void* data) { SkASSERT(data); SkASSERT(!tex->isLinearTiled()); // For now the assumption is that our rect is the entire texture. // Compressed textures are read-only so this should be a reasonable assumption. SkASSERT(0 == left && 0 == top && width == tex->width() && height == tex->height()); if (width == 0 || height == 0) { return false; } SkImage::CompressionType textureCompressionType; if (!GrVkFormatToCompressionType(tex->imageFormat(), &textureCompressionType) || textureCompressionType != compressionType) { return false; } SkASSERT(this->vkCaps().isVkFormatTexturable(tex->imageFormat())); size_t dataSize = GrCompressedDataSize(compressionType, width, height); // allocate buffer to hold our mip data sk_sp transferBuffer = GrVkTransferBuffer::Make(this, dataSize, GrVkBuffer::kCopyRead_Type); if (!transferBuffer) { return false; } int uploadLeft = left; int uploadTop = top; GrVkTexture* uploadTexture = tex; char* buffer = (char*)transferBuffer->map(); memcpy(buffer, data, dataSize); VkBufferImageCopy region; memset(®ion, 0, sizeof(VkBufferImageCopy)); region.bufferOffset = transferBuffer->offset(); region.bufferRowLength = width; region.bufferImageHeight = height; region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; region.imageOffset = { uploadLeft, uploadTop, 0 }; region.imageExtent = { SkToU32(width), SkToU32(height), 1 }; // no need to flush non-coherent memory, unmap will do that for us transferBuffer->unmap(); // Change layout of our target so it can be copied to uploadTexture->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); // Copy the buffer to the image fCurrentCmdBuffer->copyBufferToImage(this, transferBuffer.get(), uploadTexture, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion); return true; } //////////////////////////////////////////////////////////////////////////////// sk_sp GrVkGpu::onCreateTexture(const GrSurfaceDesc& desc, const GrBackendFormat& format, GrRenderable renderable, int renderTargetSampleCnt, SkBudgeted budgeted, GrProtected isProtected, const GrMipLevel texels[], int mipLevelCount) { VkFormat pixelFormat; SkAssertResult(format.asVkFormat(&pixelFormat)); SkASSERT(!GrVkFormatIsCompressed(pixelFormat)); VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_SAMPLED_BIT; if (renderable == GrRenderable::kYes) { usageFlags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; } // For now we will set the VK_IMAGE_USAGE_TRANSFER_DESTINATION_BIT and // VK_IMAGE_USAGE_TRANSFER_SOURCE_BIT on every texture since we do not know whether or not we // will be using this texture in some copy or not. Also this assumes, as is the current case, // that all render targets in vulkan are also textures. If we change this practice of setting // both bits, we must make sure to set the destination bit if we are uploading srcData to the // texture. usageFlags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; // This ImageDesc refers to the texture that will be read by the client. Thus even if msaa is // requested, this ImageDesc describes the resolved texture. Therefore we always have samples set // to 1. int mipLevels = !mipLevelCount ? 1 : mipLevelCount; GrVkImage::ImageDesc imageDesc; imageDesc.fImageType = VK_IMAGE_TYPE_2D; imageDesc.fFormat = pixelFormat; imageDesc.fWidth = desc.fWidth; imageDesc.fHeight = desc.fHeight; imageDesc.fLevels = mipLevels; imageDesc.fSamples = 1; imageDesc.fImageTiling = VK_IMAGE_TILING_OPTIMAL; imageDesc.fUsageFlags = usageFlags; imageDesc.fIsProtected = isProtected; GrMipMapsStatus mipMapsStatus = GrMipMapsStatus::kNotAllocated; if (mipLevels > 1) { mipMapsStatus = GrMipMapsStatus::kValid; for (int i = 0; i < mipLevels; ++i) { if (!texels[i].fPixels) { mipMapsStatus = GrMipMapsStatus::kDirty; break; } } } sk_sp tex; if (renderable == GrRenderable::kYes) { tex = GrVkTextureRenderTarget::MakeNewTextureRenderTarget( this, budgeted, desc, renderTargetSampleCnt, imageDesc, mipMapsStatus); } else { tex = GrVkTexture::MakeNewTexture(this, budgeted, desc, imageDesc, mipMapsStatus); } if (!tex) { return nullptr; } auto colorType = GrPixelConfigToColorType(desc.fConfig); if (mipLevelCount) { if (!this->uploadTexDataOptimal(tex.get(), 0, 0, desc.fWidth, desc.fHeight, colorType, texels, mipLevelCount)) { tex->unref(); return nullptr; } } if (this->caps()->shouldInitializeTextures()) { SkSTArray<1, VkImageSubresourceRange> ranges; bool inRange = false; for (uint32_t i = 0; i < tex->mipLevels(); ++i) { if (i >= static_cast(mipLevelCount) || !texels[i].fPixels) { if (inRange) { ranges.back().levelCount++; } else { auto& range = ranges.push_back(); range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; range.baseArrayLayer = 0; range.baseMipLevel = i; range.layerCount = 1; range.levelCount = 1; inRange = true; } } else if (inRange) { inRange = false; } } if (!ranges.empty()) { static constexpr VkClearColorValue kZeroClearColor = {}; tex->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); this->currentCommandBuffer()->clearColorImage(this, tex.get(), &kZeroClearColor, ranges.count(), ranges.begin()); } } return tex; } sk_sp GrVkGpu::onCreateCompressedTexture(int width, int height, const GrBackendFormat& format, SkImage::CompressionType compressionType, SkBudgeted budgeted, const void* data) { VkFormat pixelFormat; if (!format.asVkFormat(&pixelFormat)) { return nullptr; } VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_SAMPLED_BIT; // For now we will set the VK_IMAGE_USAGE_TRANSFER_DESTINATION_BIT and // VK_IMAGE_USAGE_TRANSFER_SOURCE_BIT on every texture since we do not know whether or not we // will be using this texture in some copy or not. Also this assumes, as is the current case, // that all render targets in vulkan are also textures. If we change this practice of setting // both bits, we must make sure to set the destination bit if we are uploading srcData to the // texture. usageFlags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; // Compressed textures with MIP levels or multiple samples are not supported as of now. GrVkImage::ImageDesc imageDesc; imageDesc.fImageType = VK_IMAGE_TYPE_2D; imageDesc.fFormat = pixelFormat; imageDesc.fWidth = width; imageDesc.fHeight = height; imageDesc.fLevels = 1; imageDesc.fSamples = 1; imageDesc.fImageTiling = VK_IMAGE_TILING_OPTIMAL; imageDesc.fUsageFlags = usageFlags; imageDesc.fIsProtected = GrProtected::kNo; GrSurfaceDesc desc; desc.fConfig = GrCompressionTypePixelConfig(compressionType); desc.fWidth = width; desc.fHeight = height; auto tex = GrVkTexture::MakeNewTexture(this, budgeted, desc, imageDesc, GrMipMapsStatus::kNotAllocated); if (!tex) { return nullptr; } if (!this->uploadTexDataCompressed(tex.get(), 0, 0, desc.fWidth, desc.fHeight, compressionType, data)) { return nullptr; } return tex; } //////////////////////////////////////////////////////////////////////////////// void GrVkGpu::copyBuffer(GrVkBuffer* srcBuffer, GrVkBuffer* dstBuffer, VkDeviceSize srcOffset, VkDeviceSize dstOffset, VkDeviceSize size) { VkBufferCopy copyRegion; copyRegion.srcOffset = srcOffset; copyRegion.dstOffset = dstOffset; copyRegion.size = size; fCurrentCmdBuffer->copyBuffer(this, srcBuffer, dstBuffer, 1, ©Region); } bool GrVkGpu::updateBuffer(GrVkBuffer* buffer, const void* src, VkDeviceSize offset, VkDeviceSize size) { // Update the buffer fCurrentCmdBuffer->updateBuffer(this, buffer, offset, size, src); return true; } //////////////////////////////////////////////////////////////////////////////// static bool check_image_info(const GrVkCaps& caps, const GrVkImageInfo& info, GrColorType colorType, bool needsAllocation) { if (VK_NULL_HANDLE == info.fImage) { return false; } if (VK_NULL_HANDLE == info.fAlloc.fMemory && needsAllocation) { return false; } if (info.fYcbcrConversionInfo.isValid()) { if (!caps.supportsYcbcrConversion()) { return false; } } if (info.fImageLayout == VK_IMAGE_LAYOUT_PRESENT_SRC_KHR && !caps.supportsSwapchain()) { return false; } SkASSERT(GrVkFormatColorTypePairIsValid(info.fFormat, colorType)); return true; } static bool check_tex_image_info(const GrVkCaps& caps, const GrVkImageInfo& info) { if (info.fImageTiling == VK_IMAGE_TILING_OPTIMAL) { if (!caps.isVkFormatTexturable(info.fFormat)) { return false; } } else { SkASSERT(info.fImageTiling == VK_IMAGE_TILING_LINEAR); if (!caps.isVkFormatTexturableLinearly(info.fFormat)) { return false; } } return true; } static bool check_rt_image_info(const GrVkCaps& caps, const GrVkImageInfo& info, int sampleCnt) { if (!caps.isFormatRenderable(info.fFormat, sampleCnt)) { return false; } return true; } sk_sp GrVkGpu::onWrapBackendTexture(const GrBackendTexture& backendTex, GrColorType colorType, GrWrapOwnership ownership, GrWrapCacheable cacheable, GrIOType ioType) { GrVkImageInfo imageInfo; if (!backendTex.getVkImageInfo(&imageInfo)) { return nullptr; } if (!check_image_info(this->vkCaps(), imageInfo, colorType, kAdopt_GrWrapOwnership == ownership)) { return nullptr; } if (!check_tex_image_info(this->vkCaps(), imageInfo)) { return nullptr; } if (backendTex.isProtected() && (fProtectedContext == GrProtected::kNo)) { return nullptr; } GrPixelConfig config = this->caps()->getConfigFromBackendFormat(backendTex.getBackendFormat(), colorType); SkASSERT(kUnknown_GrPixelConfig != config); GrSurfaceDesc surfDesc; surfDesc.fWidth = backendTex.width(); surfDesc.fHeight = backendTex.height(); surfDesc.fConfig = config; sk_sp layout = backendTex.getGrVkImageLayout(); SkASSERT(layout); return GrVkTexture::MakeWrappedTexture(this, surfDesc, ownership, cacheable, ioType, imageInfo, std::move(layout)); } sk_sp GrVkGpu::onWrapRenderableBackendTexture(const GrBackendTexture& backendTex, int sampleCnt, GrColorType colorType, GrWrapOwnership ownership, GrWrapCacheable cacheable) { GrVkImageInfo imageInfo; if (!backendTex.getVkImageInfo(&imageInfo)) { return nullptr; } if (!check_image_info(this->vkCaps(), imageInfo, colorType, kAdopt_GrWrapOwnership == ownership)) { return nullptr; } if (!check_tex_image_info(this->vkCaps(), imageInfo)) { return nullptr; } if (!check_rt_image_info(this->vkCaps(), imageInfo, sampleCnt)) { return nullptr; } if (backendTex.isProtected() && (fProtectedContext == GrProtected::kNo)) { return nullptr; } GrPixelConfig config = this->caps()->getConfigFromBackendFormat(backendTex.getBackendFormat(), colorType); SkASSERT(kUnknown_GrPixelConfig != config); GrSurfaceDesc surfDesc; surfDesc.fWidth = backendTex.width(); surfDesc.fHeight = backendTex.height(); surfDesc.fConfig = config; sampleCnt = this->vkCaps().getRenderTargetSampleCount(sampleCnt, imageInfo.fFormat); sk_sp layout = backendTex.getGrVkImageLayout(); SkASSERT(layout); return GrVkTextureRenderTarget::MakeWrappedTextureRenderTarget( this, surfDesc, sampleCnt, ownership, cacheable, imageInfo, std::move(layout)); } sk_sp GrVkGpu::onWrapBackendRenderTarget(const GrBackendRenderTarget& backendRT, GrColorType colorType) { // Currently the Vulkan backend does not support wrapping of msaa render targets directly. In // general this is not an issue since swapchain images in vulkan are never multisampled. Thus if // you want a multisampled RT it is best to wrap the swapchain images and then let Skia handle // creating and owning the MSAA images. if (backendRT.sampleCnt() > 1) { return nullptr; } GrVkImageInfo info; if (!backendRT.getVkImageInfo(&info)) { return nullptr; } GrPixelConfig config = this->caps()->getConfigFromBackendFormat(backendRT.getBackendFormat(), colorType); SkASSERT(kUnknown_GrPixelConfig != config); if (!check_image_info(this->vkCaps(), info, colorType, false)) { return nullptr; } if (!check_rt_image_info(this->vkCaps(), info, backendRT.sampleCnt())) { return nullptr; } if (backendRT.isProtected() && (fProtectedContext == GrProtected::kNo)) { return nullptr; } GrSurfaceDesc desc; desc.fWidth = backendRT.width(); desc.fHeight = backendRT.height(); desc.fConfig = config; sk_sp layout = backendRT.getGrVkImageLayout(); sk_sp tgt = GrVkRenderTarget::MakeWrappedRenderTarget(this, desc, 1, info, std::move(layout)); // We don't allow the client to supply a premade stencil buffer. We always create one if needed. SkASSERT(!backendRT.stencilBits()); if (tgt) { SkASSERT(tgt->canAttemptStencilAttachment()); } return tgt; } sk_sp GrVkGpu::onWrapBackendTextureAsRenderTarget(const GrBackendTexture& tex, int sampleCnt, GrColorType grColorType) { GrVkImageInfo imageInfo; if (!tex.getVkImageInfo(&imageInfo)) { return nullptr; } if (!check_image_info(this->vkCaps(), imageInfo, grColorType, false)) { return nullptr; } if (!check_rt_image_info(this->vkCaps(), imageInfo, sampleCnt)) { return nullptr; } if (tex.isProtected() && (fProtectedContext == GrProtected::kNo)) { return nullptr; } GrPixelConfig config = this->caps()->getConfigFromBackendFormat(tex.getBackendFormat(), grColorType); SkASSERT(kUnknown_GrPixelConfig != config); GrSurfaceDesc desc; desc.fWidth = tex.width(); desc.fHeight = tex.height(); desc.fConfig = config; sampleCnt = this->vkCaps().getRenderTargetSampleCount(sampleCnt, imageInfo.fFormat); if (!sampleCnt) { return nullptr; } sk_sp layout = tex.getGrVkImageLayout(); SkASSERT(layout); return GrVkRenderTarget::MakeWrappedRenderTarget(this, desc, sampleCnt, imageInfo, std::move(layout)); } sk_sp GrVkGpu::onWrapVulkanSecondaryCBAsRenderTarget( const SkImageInfo& imageInfo, const GrVkDrawableInfo& vkInfo) { int maxSize = this->caps()->maxTextureSize(); if (imageInfo.width() > maxSize || imageInfo.height() > maxSize) { return nullptr; } GrBackendFormat backendFormat = GrBackendFormat::MakeVk(vkInfo.fFormat); if (!backendFormat.isValid()) { return nullptr; } int sampleCnt = this->vkCaps().getRenderTargetSampleCount(1, vkInfo.fFormat); if (!sampleCnt) { return nullptr; } GrColorType grColorType = SkColorTypeToGrColorType(imageInfo.colorType()); GrPixelConfig config = this->caps()->getConfigFromBackendFormat(backendFormat, grColorType); if (config == kUnknown_GrPixelConfig) { return nullptr; } GrSurfaceDesc desc; desc.fWidth = imageInfo.width(); desc.fHeight = imageInfo.height(); desc.fConfig = config; return GrVkRenderTarget::MakeSecondaryCBRenderTarget(this, desc, vkInfo); } bool GrVkGpu::onRegenerateMipMapLevels(GrTexture* tex) { auto* vkTex = static_cast(tex); // don't do anything for linearly tiled textures (can't have mipmaps) if (vkTex->isLinearTiled()) { SkDebugf("Trying to create mipmap for linear tiled texture"); return false; } // determine if we can blit to and from this format const GrVkCaps& caps = this->vkCaps(); if (!caps.formatCanBeDstofBlit(vkTex->imageFormat(), false) || !caps.formatCanBeSrcofBlit(vkTex->imageFormat(), false) || !caps.mipMapSupport()) { return false; } int width = tex->width(); int height = tex->height(); VkImageBlit blitRegion; memset(&blitRegion, 0, sizeof(VkImageBlit)); // SkMipMap doesn't include the base level in the level count so we have to add 1 uint32_t levelCount = SkMipMap::ComputeLevelCount(tex->width(), tex->height()) + 1; SkASSERT(levelCount == vkTex->mipLevels()); // change layout of the layers so we can write to them. vkTex->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); // setup memory barrier SkASSERT(GrVkFormatIsSupported(vkTex->imageFormat())); VkImageMemoryBarrier imageMemoryBarrier = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType nullptr, // pNext VK_ACCESS_TRANSFER_WRITE_BIT, // srcAccessMask VK_ACCESS_TRANSFER_READ_BIT, // dstAccessMask VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, // oldLayout VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, // newLayout VK_QUEUE_FAMILY_IGNORED, // srcQueueFamilyIndex VK_QUEUE_FAMILY_IGNORED, // dstQueueFamilyIndex vkTex->image(), // image {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1} // subresourceRange }; // Blit the miplevels uint32_t mipLevel = 1; while (mipLevel < levelCount) { int prevWidth = width; int prevHeight = height; width = SkTMax(1, width / 2); height = SkTMax(1, height / 2); imageMemoryBarrier.subresourceRange.baseMipLevel = mipLevel - 1; this->addImageMemoryBarrier(vkTex->resource(), VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false, &imageMemoryBarrier); blitRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, mipLevel - 1, 0, 1 }; blitRegion.srcOffsets[0] = { 0, 0, 0 }; blitRegion.srcOffsets[1] = { prevWidth, prevHeight, 1 }; blitRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, mipLevel, 0, 1 }; blitRegion.dstOffsets[0] = { 0, 0, 0 }; blitRegion.dstOffsets[1] = { width, height, 1 }; fCurrentCmdBuffer->blitImage(this, vkTex->resource(), vkTex->image(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, vkTex->resource(), vkTex->image(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blitRegion, VK_FILTER_LINEAR); ++mipLevel; } if (levelCount > 1) { // This barrier logically is not needed, but it changes the final level to the same layout // as all the others, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL. This makes tracking of the // layouts and future layout changes easier. The alternative here would be to track layout // and memory accesses per layer which doesn't seem work it. imageMemoryBarrier.subresourceRange.baseMipLevel = mipLevel - 1; this->addImageMemoryBarrier(vkTex->resource(), VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false, &imageMemoryBarrier); vkTex->updateImageLayout(VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); } return true; } //////////////////////////////////////////////////////////////////////////////// GrStencilAttachment* GrVkGpu::createStencilAttachmentForRenderTarget( const GrRenderTarget* rt, int width, int height, int numStencilSamples) { SkASSERT(numStencilSamples == rt->numSamples()); SkASSERT(width >= rt->width()); SkASSERT(height >= rt->height()); int samples = rt->numSamples(); const GrVkCaps::StencilFormat& sFmt = this->vkCaps().preferredStencilFormat(); GrVkStencilAttachment* stencil(GrVkStencilAttachment::Create(this, width, height, samples, sFmt)); fStats.incStencilAttachmentCreates(); return stencil; } //////////////////////////////////////////////////////////////////////////////// bool copy_src_data(GrVkGpu* gpu, const GrVkAlloc& alloc, VkFormat vkFormat, int width, int height, const void* srcData, size_t srcRowBytes) { SkASSERT(srcData); SkASSERT(!GrVkFormatIsCompressed(vkFormat)); void* mapPtr = GrVkMemory::MapAlloc(gpu, alloc); if (!mapPtr) { return false; } size_t bytesPerPixel = GrVkBytesPerFormat(vkFormat); const size_t trimRowBytes = width * bytesPerPixel; if (!srcRowBytes) { srcRowBytes = trimRowBytes; } SkASSERT(trimRowBytes * height <= alloc.fSize); SkRectMemcpy(mapPtr, trimRowBytes, srcData, srcRowBytes, trimRowBytes, height); GrVkMemory::FlushMappedAlloc(gpu, alloc, 0, alloc.fSize); GrVkMemory::UnmapAlloc(gpu, alloc); return true; } bool copy_compressed_src_data(GrVkGpu* gpu, const GrVkAlloc& alloc, SkImage::CompressionType compressionType, int width, int height, const void* data) { SkASSERT(data); void* mapPtr = GrVkMemory::MapAlloc(gpu, alloc); if (!mapPtr) { return false; } mapPtr = reinterpret_cast(mapPtr); size_t dataSize = GrCompressedDataSize(compressionType, width, height); SkASSERT(dataSize <= alloc.fSize); memcpy(mapPtr, data, dataSize); GrVkMemory::FlushMappedAlloc(gpu, alloc, 0, alloc.fSize); GrVkMemory::UnmapAlloc(gpu, alloc); return true; } static void set_image_layout(const GrVkInterface* vkInterface, VkCommandBuffer cmdBuffer, GrVkImageInfo* info, VkImageLayout newLayout, uint32_t mipLevels, VkAccessFlags dstAccessMask, VkPipelineStageFlagBits dstStageMask) { VkAccessFlags srcAccessMask = GrVkImage::LayoutToSrcAccessMask(info->fImageLayout); VkPipelineStageFlags srcStageMask = GrVkImage::LayoutToPipelineSrcStageFlags( info->fImageLayout); VkImageMemoryBarrier barrier; memset(&barrier, 0, sizeof(VkImageMemoryBarrier)); barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; barrier.pNext = nullptr; barrier.srcAccessMask = srcAccessMask; barrier.dstAccessMask = dstAccessMask; barrier.oldLayout = info->fImageLayout; barrier.newLayout = newLayout; barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier.image = info->fImage; barrier.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, mipLevels, 0, 1}; GR_VK_CALL(vkInterface, CmdPipelineBarrier( cmdBuffer, srcStageMask, dstStageMask, 0, 0, nullptr, 0, nullptr, 1, &barrier)); info->fImageLayout = newLayout; } bool GrVkGpu::createVkImageForBackendSurface(VkFormat vkFormat, int w, int h, bool texturable, bool renderable, GrMipMapped mipMapped, const void* srcData, size_t srcRowBytes, const SkColor4f* color, GrVkImageInfo* info, GrProtected isProtected) { SkASSERT(texturable || renderable); if (!texturable) { SkASSERT(GrMipMapped::kNo == mipMapped); SkASSERT(!srcData); } if (fProtectedContext != isProtected) { return false; } if (texturable && !fVkCaps->isVkFormatTexturable(vkFormat)) { return false; } if (renderable && !fVkCaps->isFormatRenderable(vkFormat, 1)) { return false; } // Currently we don't support uploading pixel data when mipped. if (srcData && GrMipMapped::kYes == mipMapped) { return false; } VkImageUsageFlags usageFlags = 0; usageFlags |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT; usageFlags |= VK_IMAGE_USAGE_TRANSFER_DST_BIT; if (texturable) { usageFlags |= VK_IMAGE_USAGE_SAMPLED_BIT; } if (renderable) { usageFlags |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; } // Figure out the number of mip levels. uint32_t mipLevels = 1; if (GrMipMapped::kYes == mipMapped) { mipLevels = SkMipMap::ComputeLevelCount(w, h) + 1; } GrVkImage::ImageDesc imageDesc; imageDesc.fImageType = VK_IMAGE_TYPE_2D; imageDesc.fFormat = vkFormat; imageDesc.fWidth = w; imageDesc.fHeight = h; imageDesc.fLevels = mipLevels; imageDesc.fSamples = 1; imageDesc.fImageTiling = VK_IMAGE_TILING_OPTIMAL; imageDesc.fUsageFlags = usageFlags; imageDesc.fMemProps = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; imageDesc.fIsProtected = fProtectedContext; if (!GrVkImage::InitImageInfo(this, imageDesc, info)) { SkDebugf("Failed to init image info\n"); return false; } if (!srcData && !color) { return true; } // We need to declare these early so that we can delete them at the end outside of // the if block. GrVkAlloc bufferAlloc; VkBuffer buffer = VK_NULL_HANDLE; VkResult err; const VkCommandBufferAllocateInfo cmdInfo = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, // sType nullptr, // pNext fCmdPool->vkCommandPool(), // commandPool VK_COMMAND_BUFFER_LEVEL_PRIMARY, // level 1 // bufferCount }; VkCommandBuffer cmdBuffer; err = VK_CALL(AllocateCommandBuffers(fDevice, &cmdInfo, &cmdBuffer)); if (err) { GrVkImage::DestroyImageInfo(this, info); return false; } VkCommandBufferBeginInfo cmdBufferBeginInfo; memset(&cmdBufferBeginInfo, 0, sizeof(VkCommandBufferBeginInfo)); cmdBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; cmdBufferBeginInfo.pNext = nullptr; cmdBufferBeginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; cmdBufferBeginInfo.pInheritanceInfo = nullptr; err = VK_CALL(BeginCommandBuffer(cmdBuffer, &cmdBufferBeginInfo)); SkASSERT(!err); // Set image layout and add barrier set_image_layout(this->vkInterface(), cmdBuffer, info, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, mipLevels, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT); // TODO: Lift this to GrContext level. SkImage::CompressionType compressionType; bool isCompressed = GrVkFormatToCompressionType(vkFormat, &compressionType); std::unique_ptr tempData; if (isCompressed && !srcData) { SkASSERT(color); size_t size = GrCompressedDataSize(compressionType, w, h); tempData.reset(new char[size]); GrFillInCompressedData(compressionType, w, h, tempData.get(), *color); srcData = tempData.get(); } if (srcData) { size_t bytesPerPixel = GrVkBytesPerFormat(vkFormat); SkASSERT(w && h); SkTArray individualMipOffsets(mipLevels); SkImage::CompressionType compressionType; bool isCompressed = GrVkFormatToCompressionType(vkFormat, &compressionType); size_t combinedBufferSize; if (isCompressed) { // Compressed textures currently must be non-MIP mapped. if (mipMapped == GrMipMapped::kYes) { return false; } combinedBufferSize = GrCompressedDataSize(compressionType, w, h); individualMipOffsets.push_back(0); } else { combinedBufferSize = GrComputeTightCombinedBufferSize(bytesPerPixel, w, h, &individualMipOffsets, mipLevels); } VkBufferCreateInfo bufInfo; memset(&bufInfo, 0, sizeof(VkBufferCreateInfo)); bufInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; bufInfo.flags = fProtectedContext == GrProtected::kYes ? VK_BUFFER_CREATE_PROTECTED_BIT : 0; bufInfo.size = combinedBufferSize; bufInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; bufInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; bufInfo.queueFamilyIndexCount = 0; bufInfo.pQueueFamilyIndices = nullptr; err = VK_CALL(CreateBuffer(fDevice, &bufInfo, nullptr, &buffer)); if (err) { GrVkImage::DestroyImageInfo(this, info); VK_CALL(EndCommandBuffer(cmdBuffer)); VK_CALL(FreeCommandBuffers(fDevice, fCmdPool->vkCommandPool(), 1, &cmdBuffer)); return false; } if (!GrVkMemory::AllocAndBindBufferMemory(this, buffer, GrVkBuffer::kCopyRead_Type, true, &bufferAlloc)) { GrVkImage::DestroyImageInfo(this, info); VK_CALL(DestroyBuffer(fDevice, buffer, nullptr)); VK_CALL(EndCommandBuffer(cmdBuffer)); VK_CALL(FreeCommandBuffers(fDevice, fCmdPool->vkCommandPool(), 1, &cmdBuffer)); return false; } bool result; if (isCompressed) { result = copy_compressed_src_data(this, bufferAlloc, compressionType, w, h, srcData); } else { SkASSERT(1 == mipLevels); result = copy_src_data(this, bufferAlloc, vkFormat, w, h, srcData, srcRowBytes); } if (!result) { GrVkImage::DestroyImageInfo(this, info); GrVkMemory::FreeBufferMemory(this, GrVkBuffer::kCopyRead_Type, bufferAlloc); VK_CALL(DestroyBuffer(fDevice, buffer, nullptr)); VK_CALL(EndCommandBuffer(cmdBuffer)); VK_CALL(FreeCommandBuffers(fDevice, fCmdPool->vkCommandPool(), 1, &cmdBuffer)); return false; } SkTArray regions(mipLevels); int currentWidth = w; int currentHeight = h; for (uint32_t currentMipLevel = 0; currentMipLevel < mipLevels; currentMipLevel++) { // Submit copy command VkBufferImageCopy& region = regions.push_back(); memset(®ion, 0, sizeof(VkBufferImageCopy)); region.bufferOffset = individualMipOffsets[currentMipLevel]; region.bufferRowLength = currentWidth; region.bufferImageHeight = currentHeight; region.imageSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, currentMipLevel, 0, 1}; region.imageOffset = {0, 0, 0}; region.imageExtent = {(uint32_t)currentWidth, (uint32_t)currentHeight, 1}; currentWidth = SkTMax(1, currentWidth / 2); currentHeight = SkTMax(1, currentHeight / 2); } VK_CALL(CmdCopyBufferToImage(cmdBuffer, buffer, info->fImage, info->fImageLayout, regions.count(), regions.begin())); } else { SkASSERT(color); VkClearColorValue vkColor; // If we ever support SINT or UINT formats this needs to be updated to use the int32 and // uint32 union members in those cases. vkColor.float32[0] = color->fR; vkColor.float32[1] = color->fG; vkColor.float32[2] = color->fB; vkColor.float32[3] = color->fA; VkImageSubresourceRange range; range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; range.baseArrayLayer = 0; range.baseMipLevel = 0; range.layerCount = 1; range.levelCount = mipLevels; VK_CALL(CmdClearColorImage(cmdBuffer, info->fImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &vkColor, 1, &range)); } if (!srcData && renderable) { SkASSERT(color); // Change image layout to color-attachment-optimal since if we use this texture as a // borrowed texture within Ganesh we are probably going to render to it set_image_layout(this->vkInterface(), cmdBuffer, info, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, mipLevels, VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT); } else if (texturable) { // Change image layout to shader read since if we use this texture as a borrowed // texture within Ganesh we require that its layout be set to that set_image_layout(this->vkInterface(), cmdBuffer, info, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, mipLevels, VK_ACCESS_SHADER_READ_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT); } // End CommandBuffer err = VK_CALL(EndCommandBuffer(cmdBuffer)); SkASSERT(!err); // Create Fence for queue VkFenceCreateInfo fenceInfo; memset(&fenceInfo, 0, sizeof(VkFenceCreateInfo)); fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; fenceInfo.pNext = nullptr; fenceInfo.flags = 0; VkFence fence = VK_NULL_HANDLE; err = VK_CALL(CreateFence(fDevice, &fenceInfo, nullptr, &fence)); SkASSERT(!err); VkProtectedSubmitInfo protectedSubmitInfo; if (fProtectedContext == GrProtected::kYes) { memset(&protectedSubmitInfo, 0, sizeof(VkProtectedSubmitInfo)); protectedSubmitInfo.sType = VK_STRUCTURE_TYPE_PROTECTED_SUBMIT_INFO; protectedSubmitInfo.pNext = nullptr; protectedSubmitInfo.protectedSubmit = VK_TRUE; } VkSubmitInfo submitInfo; memset(&submitInfo, 0, sizeof(VkSubmitInfo)); submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submitInfo.pNext = fProtectedContext == GrProtected::kYes ? &protectedSubmitInfo : nullptr; submitInfo.waitSemaphoreCount = 0; submitInfo.pWaitSemaphores = nullptr; submitInfo.pWaitDstStageMask = 0; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &cmdBuffer; submitInfo.signalSemaphoreCount = 0; submitInfo.pSignalSemaphores = nullptr; err = VK_CALL(QueueSubmit(this->queue(), 1, &submitInfo, fence)); SkASSERT(!err); err = VK_CALL(WaitForFences(this->device(), 1, &fence, VK_TRUE, UINT64_MAX)); if (VK_TIMEOUT == err) { GrVkImage::DestroyImageInfo(this, info); if (buffer != VK_NULL_HANDLE) { // workaround for an older NVidia driver crash GrVkMemory::FreeBufferMemory(this, GrVkBuffer::kCopyRead_Type, bufferAlloc); VK_CALL(DestroyBuffer(fDevice, buffer, nullptr)); } VK_CALL(FreeCommandBuffers(fDevice, fCmdPool->vkCommandPool(), 1, &cmdBuffer)); VK_CALL(DestroyFence(this->device(), fence, nullptr)); SkDebugf("Fence failed to signal: %d\n", err); SK_ABORT("failing"); } SkASSERT(!err); // Clean up transfer resources if (buffer != VK_NULL_HANDLE) { // workaround for an older NVidia driver crash GrVkMemory::FreeBufferMemory(this, GrVkBuffer::kCopyRead_Type, bufferAlloc); VK_CALL(DestroyBuffer(fDevice, buffer, nullptr)); } VK_CALL(FreeCommandBuffers(fDevice, fCmdPool->vkCommandPool(), 1, &cmdBuffer)); VK_CALL(DestroyFence(this->device(), fence, nullptr)); return true; } GrBackendTexture GrVkGpu::createBackendTexture(int w, int h, const GrBackendFormat& format, GrMipMapped mipMapped, GrRenderable renderable, const void* srcData, size_t rowBytes, const SkColor4f* color, GrProtected isProtected) { const GrVkCaps& caps = this->vkCaps(); this->handleDirtyContext(); if (fProtectedContext != isProtected) { return GrBackendTexture(); } if (w > caps.maxTextureSize() || h > caps.maxTextureSize()) { return GrBackendTexture(); } VkFormat vkFormat; if (!format.asVkFormat(&vkFormat)) { SkDebugf("Could net get vkformat\n"); return GrBackendTexture(); } if (!caps.isVkFormatTexturable(vkFormat)) { SkDebugf("Config is not texturable\n"); return GrBackendTexture(); } if (GrVkFormatNeedsYcbcrSampler(vkFormat)) { SkDebugf("Can't create BackendTexture that requires Ycbcb sampler.\n"); return GrBackendTexture(); } GrVkImageInfo info; if (!this->createVkImageForBackendSurface(vkFormat, w, h, true, GrRenderable::kYes == renderable, mipMapped, srcData, rowBytes, color, &info, isProtected)) { SkDebugf("Failed to create testing only image\n"); return GrBackendTexture(); } return GrBackendTexture(w, h, info); } void GrVkGpu::deleteBackendTexture(const GrBackendTexture& tex) { SkASSERT(GrBackendApi::kVulkan == tex.fBackend); GrVkImageInfo info; if (tex.getVkImageInfo(&info)) { GrVkImage::DestroyImageInfo(this, const_cast(&info)); } } #if GR_TEST_UTILS bool GrVkGpu::isTestingOnlyBackendTexture(const GrBackendTexture& tex) const { SkASSERT(GrBackendApi::kVulkan == tex.fBackend); GrVkImageInfo backend; if (!tex.getVkImageInfo(&backend)) { return false; } if (backend.fImage && backend.fAlloc.fMemory) { VkMemoryRequirements req; memset(&req, 0, sizeof(req)); GR_VK_CALL(this->vkInterface(), GetImageMemoryRequirements(fDevice, backend.fImage, &req)); // TODO: find a better check // This will probably fail with a different driver return (req.size > 0) && (req.size <= 8192 * 8192); } return false; } GrBackendRenderTarget GrVkGpu::createTestingOnlyBackendRenderTarget(int w, int h, GrColorType ct) { this->handleDirtyContext(); if (w > this->caps()->maxRenderTargetSize() || h > this->caps()->maxRenderTargetSize()) { return GrBackendRenderTarget(); } VkFormat vkFormat = this->vkCaps().getFormatFromColorType(ct); GrVkImageInfo info; if (!this->createVkImageForBackendSurface(vkFormat, w, h, false, true, GrMipMapped::kNo, nullptr, 0, &SkColors::kTransparent, &info, GrProtected::kNo)) { return {}; } return GrBackendRenderTarget(w, h, 1, 0, info); } void GrVkGpu::deleteTestingOnlyBackendRenderTarget(const GrBackendRenderTarget& rt) { SkASSERT(GrBackendApi::kVulkan == rt.fBackend); GrVkImageInfo info; if (rt.getVkImageInfo(&info)) { // something in the command buffer may still be using this, so force submit this->submitCommandBuffer(kForce_SyncQueue); GrVkImage::DestroyImageInfo(this, const_cast(&info)); } } void GrVkGpu::testingOnly_flushGpuAndSync() { this->submitCommandBuffer(kForce_SyncQueue); } #endif //////////////////////////////////////////////////////////////////////////////// void GrVkGpu::addBufferMemoryBarrier(const GrVkResource* resource, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask, bool byRegion, VkBufferMemoryBarrier* barrier) const { SkASSERT(fCurrentCmdBuffer); SkASSERT(resource); fCurrentCmdBuffer->pipelineBarrier(this, resource, srcStageMask, dstStageMask, byRegion, GrVkCommandBuffer::kBufferMemory_BarrierType, barrier); } void GrVkGpu::addImageMemoryBarrier(const GrVkResource* resource, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask, bool byRegion, VkImageMemoryBarrier* barrier) const { SkASSERT(fCurrentCmdBuffer); SkASSERT(resource); fCurrentCmdBuffer->pipelineBarrier(this, resource, srcStageMask, dstStageMask, byRegion, GrVkCommandBuffer::kImageMemory_BarrierType, barrier); } void GrVkGpu::onFinishFlush(GrSurfaceProxy* proxies[], int n, SkSurface::BackendSurfaceAccess access, const GrFlushInfo& info, const GrPrepareForExternalIORequests& externalRequests) { SkASSERT(n >= 0); SkASSERT(!n || proxies); // Submit the current command buffer to the Queue. Whether we inserted semaphores or not does // not effect what we do here. if (n && access == SkSurface::BackendSurfaceAccess::kPresent) { GrVkImage* image; for (int i = 0; i < n; ++i) { SkASSERT(proxies[i]->isInstantiated()); if (GrTexture* tex = proxies[i]->peekTexture()) { image = static_cast(tex); } else { GrRenderTarget* rt = proxies[i]->peekRenderTarget(); SkASSERT(rt); image = static_cast(rt); } image->prepareForPresent(this); } } // Handle requests for preparing for external IO for (int i = 0; i < externalRequests.fNumImages; ++i) { SkImage* image = externalRequests.fImages[i]; if (!image->isTextureBacked()) { continue; } SkImage_GpuBase* gpuImage = static_cast(as_IB(image)); sk_sp proxy = gpuImage->asTextureProxyRef(this->getContext()); SkASSERT(proxy); if (!proxy->isInstantiated()) { auto resourceProvider = this->getContext()->priv().resourceProvider(); if (!proxy->instantiate(resourceProvider)) { continue; } } GrTexture* tex = proxy->peekTexture(); if (!tex) { continue; } GrVkTexture* vkTex = static_cast(tex); vkTex->prepareForExternal(this); } for (int i = 0; i < externalRequests.fNumSurfaces; ++i) { SkSurface* surface = externalRequests.fSurfaces[i]; if (!surface->getCanvas()->getGrContext()) { continue; } SkSurface_Gpu* gpuSurface = static_cast(surface); auto* rtc = gpuSurface->getDevice()->accessRenderTargetContext(); sk_sp proxy = rtc->asRenderTargetProxyRef(); if (!proxy->isInstantiated()) { auto resourceProvider = this->getContext()->priv().resourceProvider(); if (!proxy->instantiate(resourceProvider)) { continue; } } GrRenderTarget* rt = proxy->peekRenderTarget(); SkASSERT(rt); GrVkRenderTarget* vkRT = static_cast(rt); if (externalRequests.fPrepareSurfaceForPresent && externalRequests.fPrepareSurfaceForPresent[i]) { vkRT->prepareForPresent(this); } else { vkRT->prepareForExternal(this); } } if (info.fFlags & kSyncCpu_GrFlushFlag) { this->submitCommandBuffer(kForce_SyncQueue, info.fFinishedProc, info.fFinishedContext); } else { this->submitCommandBuffer(kSkip_SyncQueue, info.fFinishedProc, info.fFinishedContext); } } static int get_surface_sample_cnt(GrSurface* surf) { if (const GrRenderTarget* rt = surf->asRenderTarget()) { return rt->numSamples(); } return 0; } void GrVkGpu::copySurfaceAsCopyImage(GrSurface* dst, GrSurface* src, GrVkImage* dstImage, GrVkImage* srcImage, const SkIRect& srcRect, const SkIPoint& dstPoint) { #ifdef SK_DEBUG int dstSampleCnt = get_surface_sample_cnt(dst); int srcSampleCnt = get_surface_sample_cnt(src); bool dstHasYcbcr = dstImage->ycbcrConversionInfo().isValid(); bool srcHasYcbcr = srcImage->ycbcrConversionInfo().isValid(); VkFormat dstFormat = dstImage->imageFormat(); VkFormat srcFormat; SkAssertResult(dst->backendFormat().asVkFormat(&srcFormat)); SkASSERT(this->vkCaps().canCopyImage(dstFormat, dstSampleCnt, dstHasYcbcr, srcFormat, srcSampleCnt, srcHasYcbcr)); #endif if (src->isProtected() && !dst->isProtected()) { SkDebugf("Can't copy from protected memory to non-protected"); return; } // These flags are for flushing/invalidating caches and for the dst image it doesn't matter if // the cache is flushed since it is only being written to. dstImage->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); srcImage->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); VkImageCopy copyRegion; memset(©Region, 0, sizeof(VkImageCopy)); copyRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; copyRegion.srcOffset = { srcRect.fLeft, srcRect.fTop, 0 }; copyRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; copyRegion.dstOffset = { dstPoint.fX, dstPoint.fY, 0 }; copyRegion.extent = { (uint32_t)srcRect.width(), (uint32_t)srcRect.height(), 1 }; fCurrentCmdBuffer->copyImage(this, srcImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, dstImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Region); SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, srcRect.width(), srcRect.height()); // The rect is already in device space so we pass in kTopLeft so no flip is done. this->didWriteToSurface(dst, kTopLeft_GrSurfaceOrigin, &dstRect); } void GrVkGpu::copySurfaceAsBlit(GrSurface* dst, GrSurface* src, GrVkImage* dstImage, GrVkImage* srcImage, const SkIRect& srcRect, const SkIPoint& dstPoint) { #ifdef SK_DEBUG int dstSampleCnt = get_surface_sample_cnt(dst); int srcSampleCnt = get_surface_sample_cnt(src); bool dstHasYcbcr = dstImage->ycbcrConversionInfo().isValid(); bool srcHasYcbcr = srcImage->ycbcrConversionInfo().isValid(); VkFormat dstFormat = dstImage->imageFormat(); VkFormat srcFormat; SkAssertResult(dst->backendFormat().asVkFormat(&srcFormat)); SkASSERT(this->vkCaps().canCopyAsBlit(dstFormat, dstSampleCnt, dstImage->isLinearTiled(), dstHasYcbcr, srcFormat, srcSampleCnt, srcImage->isLinearTiled(), srcHasYcbcr)); #endif if (src->isProtected() && !dst->isProtected()) { SkDebugf("Can't copy from protected memory to non-protected"); return; } dstImage->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); srcImage->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); // Flip rect if necessary SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, srcRect.width(), srcRect.height()); VkImageBlit blitRegion; memset(&blitRegion, 0, sizeof(VkImageBlit)); blitRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; blitRegion.srcOffsets[0] = { srcRect.fLeft, srcRect.fTop, 0 }; blitRegion.srcOffsets[1] = { srcRect.fRight, srcRect.fBottom, 1 }; blitRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; blitRegion.dstOffsets[0] = { dstRect.fLeft, dstRect.fTop, 0 }; blitRegion.dstOffsets[1] = { dstRect.fRight, dstRect.fBottom, 1 }; fCurrentCmdBuffer->blitImage(this, *srcImage, *dstImage, 1, &blitRegion, VK_FILTER_NEAREST); // We never scale so any filter works here // The rect is already in device space so we pass in kTopLeft so no flip is done. this->didWriteToSurface(dst, kTopLeft_GrSurfaceOrigin, &dstRect); } void GrVkGpu::copySurfaceAsResolve(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, const SkIPoint& dstPoint) { if (src->isProtected() && !dst->isProtected()) { SkDebugf("Can't copy from protected memory to non-protected"); return; } GrVkRenderTarget* srcRT = static_cast(src->asRenderTarget()); this->resolveImage(dst, srcRT, srcRect, dstPoint); SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY, srcRect.width(), srcRect.height()); // The rect is already in device space so we pass in kTopLeft so no flip is done. this->didWriteToSurface(dst, kTopLeft_GrSurfaceOrigin, &dstRect); } bool GrVkGpu::onCopySurface(GrSurface* dst, GrSurface* src, const SkIRect& srcRect, const SkIPoint& dstPoint, bool canDiscardOutsideDstRect) { #ifdef SK_DEBUG if (GrVkRenderTarget* srcRT = static_cast(src->asRenderTarget())) { SkASSERT(!srcRT->wrapsSecondaryCommandBuffer()); } if (GrVkRenderTarget* dstRT = static_cast(dst->asRenderTarget())) { SkASSERT(!dstRT->wrapsSecondaryCommandBuffer()); } #endif if (src->isProtected() && !dst->isProtected()) { SkDebugf("Can't copy from protected memory to non-protected"); return false; } int dstSampleCnt = get_surface_sample_cnt(dst); int srcSampleCnt = get_surface_sample_cnt(src); GrVkImage* dstImage; GrVkImage* srcImage; GrRenderTarget* dstRT = dst->asRenderTarget(); if (dstRT) { GrVkRenderTarget* vkRT = static_cast(dstRT); if (vkRT->wrapsSecondaryCommandBuffer()) { return false; } dstImage = vkRT->numSamples() > 1 ? vkRT->msaaImage() : vkRT; } else { SkASSERT(dst->asTexture()); dstImage = static_cast(dst->asTexture()); } GrRenderTarget* srcRT = src->asRenderTarget(); if (srcRT) { GrVkRenderTarget* vkRT = static_cast(srcRT); srcImage = vkRT->numSamples() > 1 ? vkRT->msaaImage() : vkRT; } else { SkASSERT(src->asTexture()); srcImage = static_cast(src->asTexture()); } VkFormat dstFormat = dstImage->imageFormat(); VkFormat srcFormat = srcImage->imageFormat(); bool dstHasYcbcr = dstImage->ycbcrConversionInfo().isValid(); bool srcHasYcbcr = srcImage->ycbcrConversionInfo().isValid(); if (this->vkCaps().canCopyAsResolve(dstFormat, dstSampleCnt, dstHasYcbcr, srcFormat, srcSampleCnt, srcHasYcbcr)) { this->copySurfaceAsResolve(dst, src, srcRect, dstPoint); return true; } if (this->vkCaps().canCopyImage(dstFormat, dstSampleCnt, dstHasYcbcr, srcFormat, srcSampleCnt, srcHasYcbcr)) { this->copySurfaceAsCopyImage(dst, src, dstImage, srcImage, srcRect, dstPoint); return true; } if (this->vkCaps().canCopyAsBlit(dstFormat, dstSampleCnt, dstImage->isLinearTiled(), dstHasYcbcr, srcFormat, srcSampleCnt, srcImage->isLinearTiled(), srcHasYcbcr)) { this->copySurfaceAsBlit(dst, src, dstImage, srcImage, srcRect, dstPoint); return true; } return false; } bool GrVkGpu::onReadPixels(GrSurface* surface, int left, int top, int width, int height, GrColorType surfaceColorType, GrColorType dstColorType, void* buffer, size_t rowBytes) { if (surface->isProtected()) { return false; } if (surfaceColorType != dstColorType) { return false; } GrVkImage* image = nullptr; GrVkRenderTarget* rt = static_cast(surface->asRenderTarget()); if (rt) { // Reading from render targets that wrap a secondary command buffer is not allowed since // it would require us to know the VkImage, which we don't have, as well as need us to // stop and start the VkRenderPass which we don't have access to. if (rt->wrapsSecondaryCommandBuffer()) { return false; } // resolve the render target if necessary switch (rt->getResolveType()) { case GrVkRenderTarget::kCantResolve_ResolveType: return false; case GrVkRenderTarget::kAutoResolves_ResolveType: break; case GrVkRenderTarget::kCanResolve_ResolveType: this->resolveRenderTargetNoFlush(rt); break; default: SK_ABORT("Unknown resolve type"); } image = rt; } else { image = static_cast(surface->asTexture()); } if (!image) { return false; } // Skia's RGB_888x color type, which we map to the vulkan R8G8B8_UNORM, expects the data to be // 32 bits, but the Vulkan format is only 24. So we first copy the surface into an R8G8B8A8 // image and then do the read pixels from that. sk_sp copySurface; if (dstColorType == GrColorType::kRGB_888x && image->imageFormat() == VK_FORMAT_R8G8B8_UNORM) { int srcSampleCount = 0; if (rt) { srcSampleCount = rt->numSamples(); } bool srcHasYcbcr = image->ycbcrConversionInfo().isValid(); if (!this->vkCaps().canCopyAsBlit(VK_FORMAT_R8G8B8A8_UNORM, 1, false, false, image->imageFormat(), srcSampleCount, image->isLinearTiled(), srcHasYcbcr)) { return false; } // Make a new surface that is RGBA to copy the RGB surface into. GrSurfaceDesc surfDesc; surfDesc.fWidth = width; surfDesc.fHeight = height; surfDesc.fConfig = kRGBA_8888_GrPixelConfig; VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; GrVkImage::ImageDesc imageDesc; imageDesc.fImageType = VK_IMAGE_TYPE_2D; imageDesc.fFormat = VK_FORMAT_R8G8B8A8_UNORM; imageDesc.fWidth = width; imageDesc.fHeight = height; imageDesc.fLevels = 1; imageDesc.fSamples = 1; imageDesc.fImageTiling = VK_IMAGE_TILING_OPTIMAL; imageDesc.fUsageFlags = usageFlags; imageDesc.fMemProps = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; copySurface = GrVkTextureRenderTarget::MakeNewTextureRenderTarget( this, SkBudgeted::kYes, surfDesc, 1, imageDesc, GrMipMapsStatus::kNotAllocated); if (!copySurface) { return false; } SkIRect srcRect = SkIRect::MakeXYWH(left, top, width, height); SkAssertResult(this->copySurface(copySurface.get(), surface, srcRect, SkIPoint::Make(0,0))); top = 0; left = 0; dstColorType = GrColorType::kRGBA_8888; image = copySurface.get(); } // Change layout of our target so it can be used as copy image->setImageLayout(this, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, false); size_t bpp = GrColorTypeBytesPerPixel(dstColorType); size_t tightRowBytes = bpp * width; VkBufferImageCopy region; memset(®ion, 0, sizeof(VkBufferImageCopy)); bool copyFromOrigin = this->vkCaps().mustDoCopiesFromOrigin(); if (copyFromOrigin) { region.imageOffset = { 0, 0, 0 }; region.imageExtent = { (uint32_t)(left + width), (uint32_t)(top + height), 1 }; } else { VkOffset3D offset = { left, top, 0 }; region.imageOffset = offset; region.imageExtent = { (uint32_t)width, (uint32_t)height, 1 }; } size_t transBufferRowBytes = bpp * region.imageExtent.width; size_t imageRows = region.imageExtent.height; auto transferBuffer = sk_sp( static_cast(this->createBuffer(transBufferRowBytes * imageRows, GrGpuBufferType::kXferGpuToCpu, kStream_GrAccessPattern) .release())); // Copy the image to a buffer so we can map it to cpu memory region.bufferOffset = transferBuffer->offset(); region.bufferRowLength = 0; // Forces RowLength to be width. We handle the rowBytes below. region.bufferImageHeight = 0; // Forces height to be tightly packed. Only useful for 3d images. region.imageSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; fCurrentCmdBuffer->copyImageToBuffer(this, image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, transferBuffer.get(), 1, ®ion); // make sure the copy to buffer has finished transferBuffer->addMemoryBarrier(this, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, false); // We need to submit the current command buffer to the Queue and make sure it finishes before // we can copy the data out of the buffer. this->submitCommandBuffer(kForce_SyncQueue); void* mappedMemory = transferBuffer->map(); const GrVkAlloc& transAlloc = transferBuffer->alloc(); GrVkMemory::InvalidateMappedAlloc(this, transAlloc, 0, transAlloc.fSize); if (copyFromOrigin) { uint32_t skipRows = region.imageExtent.height - height; mappedMemory = (char*)mappedMemory + transBufferRowBytes * skipRows + bpp * left; } SkRectMemcpy(buffer, rowBytes, mappedMemory, transBufferRowBytes, tightRowBytes, height); transferBuffer->unmap(); return true; } // The RenderArea bounds we pass into BeginRenderPass must have a start x value that is a multiple // of the granularity. The width must also be a multiple of the granularity or eaqual to the width // the the entire attachment. Similar requirements for the y and height components. void adjust_bounds_to_granularity(SkIRect* dstBounds, const SkIRect& srcBounds, const VkExtent2D& granularity, int maxWidth, int maxHeight) { // Adjust Width if ((0 != granularity.width && 1 != granularity.width)) { // Start with the right side of rect so we know if we end up going pass the maxWidth. int rightAdj = srcBounds.fRight % granularity.width; if (rightAdj != 0) { rightAdj = granularity.width - rightAdj; } dstBounds->fRight = srcBounds.fRight + rightAdj; if (dstBounds->fRight > maxWidth) { dstBounds->fRight = maxWidth; dstBounds->fLeft = 0; } else { dstBounds->fLeft = srcBounds.fLeft - srcBounds.fLeft % granularity.width; } } else { dstBounds->fLeft = srcBounds.fLeft; dstBounds->fRight = srcBounds.fRight; } // Adjust height if ((0 != granularity.height && 1 != granularity.height)) { // Start with the bottom side of rect so we know if we end up going pass the maxHeight. int bottomAdj = srcBounds.fBottom % granularity.height; if (bottomAdj != 0) { bottomAdj = granularity.height - bottomAdj; } dstBounds->fBottom = srcBounds.fBottom + bottomAdj; if (dstBounds->fBottom > maxHeight) { dstBounds->fBottom = maxHeight; dstBounds->fTop = 0; } else { dstBounds->fTop = srcBounds.fTop - srcBounds.fTop % granularity.height; } } else { dstBounds->fTop = srcBounds.fTop; dstBounds->fBottom = srcBounds.fBottom; } } void GrVkGpu::submitSecondaryCommandBuffer( std::unique_ptr buffer, const GrVkRenderPass* renderPass, const VkClearValue* colorClear, GrVkRenderTarget* target, GrSurfaceOrigin origin, const SkIRect& bounds) { SkASSERT (!target->wrapsSecondaryCommandBuffer()); const SkIRect* pBounds = &bounds; SkIRect flippedBounds; if (kBottomLeft_GrSurfaceOrigin == origin) { flippedBounds = bounds; flippedBounds.fTop = target->height() - bounds.fBottom; flippedBounds.fBottom = target->height() - bounds.fTop; pBounds = &flippedBounds; } // The bounds we use for the render pass should be of the granularity supported // by the device. const VkExtent2D& granularity = renderPass->granularity(); SkIRect adjustedBounds; if ((0 != granularity.width && 1 != granularity.width) || (0 != granularity.height && 1 != granularity.height)) { adjust_bounds_to_granularity(&adjustedBounds, *pBounds, granularity, target->width(), target->height()); pBounds = &adjustedBounds; } #ifdef SK_DEBUG uint32_t index; bool result = renderPass->colorAttachmentIndex(&index); SkASSERT(result && 0 == index); result = renderPass->stencilAttachmentIndex(&index); if (result) { SkASSERT(1 == index); } #endif VkClearValue clears[2]; clears[0].color = colorClear->color; clears[1].depthStencil.depth = 0.0f; clears[1].depthStencil.stencil = 0; fCurrentCmdBuffer->beginRenderPass(this, renderPass, clears, *target, *pBounds, true); fCurrentCmdBuffer->executeCommands(this, std::move(buffer)); fCurrentCmdBuffer->endRenderPass(this); this->didWriteToSurface(target, origin, &bounds); } void GrVkGpu::submit(GrGpuCommandBuffer* buffer) { if (buffer->asRTCommandBuffer()) { SkASSERT(fCachedRTCommandBuffer.get() == buffer); fCachedRTCommandBuffer->submit(); fCachedRTCommandBuffer->reset(); } else { SkASSERT(fCachedTexCommandBuffer.get() == buffer); fCachedTexCommandBuffer->submit(); fCachedTexCommandBuffer->reset(); } } GrFence SK_WARN_UNUSED_RESULT GrVkGpu::insertFence() { VkFenceCreateInfo createInfo; memset(&createInfo, 0, sizeof(VkFenceCreateInfo)); createInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; createInfo.pNext = nullptr; createInfo.flags = 0; VkFence fence = VK_NULL_HANDLE; VK_CALL_ERRCHECK(CreateFence(this->device(), &createInfo, nullptr, &fence)); VK_CALL(QueueSubmit(this->queue(), 0, nullptr, fence)); GR_STATIC_ASSERT(sizeof(GrFence) >= sizeof(VkFence)); return (GrFence)fence; } bool GrVkGpu::waitFence(GrFence fence, uint64_t timeout) { SkASSERT(VK_NULL_HANDLE != (VkFence)fence); VkResult result = VK_CALL(WaitForFences(this->device(), 1, (VkFence*)&fence, VK_TRUE, timeout)); return (VK_SUCCESS == result); } void GrVkGpu::deleteFence(GrFence fence) const { VK_CALL(DestroyFence(this->device(), (VkFence)fence, nullptr)); } sk_sp SK_WARN_UNUSED_RESULT GrVkGpu::makeSemaphore(bool isOwned) { return GrVkSemaphore::Make(this, isOwned); } sk_sp GrVkGpu::wrapBackendSemaphore(const GrBackendSemaphore& semaphore, GrResourceProvider::SemaphoreWrapType wrapType, GrWrapOwnership ownership) { return GrVkSemaphore::MakeWrapped(this, semaphore.vkSemaphore(), wrapType, ownership); } void GrVkGpu::insertSemaphore(sk_sp semaphore) { GrVkSemaphore* vkSem = static_cast(semaphore.get()); GrVkSemaphore::Resource* resource = vkSem->getResource(); if (resource->shouldSignal()) { resource->ref(); fSemaphoresToSignal.push_back(resource); } } void GrVkGpu::waitSemaphore(sk_sp semaphore) { GrVkSemaphore* vkSem = static_cast(semaphore.get()); GrVkSemaphore::Resource* resource = vkSem->getResource(); if (resource->shouldWait()) { resource->ref(); fSemaphoresToWaitOn.push_back(resource); } } sk_sp GrVkGpu::prepareTextureForCrossContextUsage(GrTexture* texture) { SkASSERT(texture); GrVkTexture* vkTexture = static_cast(texture); vkTexture->setImageLayout(this, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_ACCESS_SHADER_READ_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, false); this->submitCommandBuffer(kSkip_SyncQueue); // The image layout change serves as a barrier, so no semaphore is needed. // If we ever decide we need to return a semaphore here, we need to make sure GrVkSemaphore is // thread safe so that only the first thread that tries to use the semaphore actually submits // it. This additionally would also require thread safety in command buffer submissions to // queues in general. return nullptr; } void GrVkGpu::addDrawable(std::unique_ptr drawable) { fDrawables.emplace_back(std::move(drawable)); } uint32_t GrVkGpu::getExtraSamplerKeyForProgram(const GrSamplerState& samplerState, const GrBackendFormat& format) { const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo(); SkASSERT(ycbcrInfo); if (!ycbcrInfo->isValid()) { return 0; } const GrVkSampler* sampler = this->resourceProvider().findOrCreateCompatibleSampler( samplerState, *ycbcrInfo); uint32_t result = sampler->uniqueID(); sampler->unref(this); return result; } void GrVkGpu::storeVkPipelineCacheData() { if (this->getContext()->priv().getPersistentCache()) { this->resourceProvider().storePipelineCacheData(); } }