/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/pdf/SkPDFGradientShader.h" #include "include/docs/SkPDFDocument.h" #include "src/core/SkOpts.h" #include "src/pdf/SkPDFDocumentPriv.h" #include "src/pdf/SkPDFFormXObject.h" #include "src/pdf/SkPDFGraphicState.h" #include "src/pdf/SkPDFResourceDict.h" #include "src/pdf/SkPDFTypes.h" #include "src/pdf/SkPDFUtils.h" static uint32_t hash(const SkShader::GradientInfo& v) { uint32_t buffer[] = { (uint32_t)v.fColorCount, SkOpts::hash(v.fColors, v.fColorCount * sizeof(SkColor)), SkOpts::hash(v.fColorOffsets, v.fColorCount * sizeof(SkScalar)), SkOpts::hash(v.fPoint, 2 * sizeof(SkPoint)), SkOpts::hash(v.fRadius, 2 * sizeof(SkScalar)), (uint32_t)v.fTileMode, v.fGradientFlags, }; return SkOpts::hash(buffer, sizeof(buffer)); } static uint32_t hash(const SkPDFGradientShader::Key& k) { uint32_t buffer[] = { (uint32_t)k.fType, hash(k.fInfo), SkOpts::hash(&k.fCanvasTransform, sizeof(SkMatrix)), SkOpts::hash(&k.fShaderTransform, sizeof(SkMatrix)), SkOpts::hash(&k.fBBox, sizeof(SkIRect)) }; return SkOpts::hash(buffer, sizeof(buffer)); } static void unit_to_points_matrix(const SkPoint pts[2], SkMatrix* matrix) { SkVector vec = pts[1] - pts[0]; SkScalar mag = vec.length(); SkScalar inv = mag ? SkScalarInvert(mag) : 0; vec.scale(inv); matrix->setSinCos(vec.fY, vec.fX); matrix->preScale(mag, mag); matrix->postTranslate(pts[0].fX, pts[0].fY); } static const int kColorComponents = 3; typedef uint8_t ColorTuple[kColorComponents]; /* Assumes t + startOffset is on the stack and does a linear interpolation on t between startOffset and endOffset from prevColor to curColor (for each color component), leaving the result in component order on the stack. It assumes there are always 3 components per color. @param range endOffset - startOffset @param curColor[components] The current color components. @param prevColor[components] The previous color components. @param result The result ps function. */ static void interpolate_color_code(SkScalar range, const ColorTuple& curColor, const ColorTuple& prevColor, SkDynamicMemoryWStream* result) { SkASSERT(range != SkIntToScalar(0)); // Figure out how to scale each color component. SkScalar multiplier[kColorComponents]; for (int i = 0; i < kColorComponents; i++) { static const SkScalar kColorScale = SkScalarInvert(255); multiplier[i] = kColorScale * (curColor[i] - prevColor[i]) / range; } // Calculate when we no longer need to keep a copy of the input parameter t. // If the last component to use t is i, then dupInput[0..i - 1] = true // and dupInput[i .. components] = false. bool dupInput[kColorComponents]; dupInput[kColorComponents - 1] = false; for (int i = kColorComponents - 2; i >= 0; i--) { dupInput[i] = dupInput[i + 1] || multiplier[i + 1] != 0; } if (!dupInput[0] && multiplier[0] == 0) { result->writeText("pop "); } for (int i = 0; i < kColorComponents; i++) { // If the next components needs t and this component will consume a // copy, make another copy. if (dupInput[i] && multiplier[i] != 0) { result->writeText("dup "); } if (multiplier[i] == 0) { SkPDFUtils::AppendColorComponent(prevColor[i], result); result->writeText(" "); } else { if (multiplier[i] != 1) { SkPDFUtils::AppendScalar(multiplier[i], result); result->writeText(" mul "); } if (prevColor[i] != 0) { SkPDFUtils::AppendColorComponent(prevColor[i], result); result->writeText(" add "); } } if (dupInput[i]) { result->writeText("exch\n"); } } } /* Generate Type 4 function code to map t=[0,1) to the passed gradient, clamping at the edges of the range. The generated code will be of the form: if (t < 0) { return colorData[0][r,g,b]; } else { if (t < info.fColorOffsets[1]) { return linearinterpolation(colorData[0][r,g,b], colorData[1][r,g,b]); } else { if (t < info.fColorOffsets[2]) { return linearinterpolation(colorData[1][r,g,b], colorData[2][r,g,b]); } else { ... } else { return colorData[info.fColorCount - 1][r,g,b]; } ... } } */ static void gradient_function_code(const SkShader::GradientInfo& info, SkDynamicMemoryWStream* result) { /* We want to linearly interpolate from the previous color to the next. Scale the colors from 0..255 to 0..1 and determine the multipliers for interpolation. C{r,g,b}(t, section) = t - offset_(section-1) + t * Multiplier{r,g,b}. */ SkAutoSTMalloc<4, ColorTuple> colorDataAlloc(info.fColorCount); ColorTuple *colorData = colorDataAlloc.get(); for (int i = 0; i < info.fColorCount; i++) { colorData[i][0] = SkColorGetR(info.fColors[i]); colorData[i][1] = SkColorGetG(info.fColors[i]); colorData[i][2] = SkColorGetB(info.fColors[i]); } // Clamp the initial color. result->writeText("dup 0 le {pop "); SkPDFUtils::AppendColorComponent(colorData[0][0], result); result->writeText(" "); SkPDFUtils::AppendColorComponent(colorData[0][1], result); result->writeText(" "); SkPDFUtils::AppendColorComponent(colorData[0][2], result); result->writeText(" }\n"); // The gradient colors. int gradients = 0; for (int i = 1 ; i < info.fColorCount; i++) { if (info.fColorOffsets[i] == info.fColorOffsets[i - 1]) { continue; } gradients++; result->writeText("{dup "); SkPDFUtils::AppendScalar(info.fColorOffsets[i], result); result->writeText(" le {"); if (info.fColorOffsets[i - 1] != 0) { SkPDFUtils::AppendScalar(info.fColorOffsets[i - 1], result); result->writeText(" sub\n"); } interpolate_color_code(info.fColorOffsets[i] - info.fColorOffsets[i - 1], colorData[i], colorData[i - 1], result); result->writeText("}\n"); } // Clamp the final color. result->writeText("{pop "); SkPDFUtils::AppendColorComponent(colorData[info.fColorCount - 1][0], result); result->writeText(" "); SkPDFUtils::AppendColorComponent(colorData[info.fColorCount - 1][1], result); result->writeText(" "); SkPDFUtils::AppendColorComponent(colorData[info.fColorCount - 1][2], result); for (int i = 0 ; i < gradients + 1; i++) { result->writeText("} ifelse\n"); } } static std::unique_ptr createInterpolationFunction(const ColorTuple& color1, const ColorTuple& color2) { auto retval = SkPDFMakeDict(); auto c0 = SkPDFMakeArray(); c0->appendColorComponent(color1[0]); c0->appendColorComponent(color1[1]); c0->appendColorComponent(color1[2]); retval->insertObject("C0", std::move(c0)); auto c1 = SkPDFMakeArray(); c1->appendColorComponent(color2[0]); c1->appendColorComponent(color2[1]); c1->appendColorComponent(color2[2]); retval->insertObject("C1", std::move(c1)); retval->insertObject("Domain", SkPDFMakeArray(0, 1)); retval->insertInt("FunctionType", 2); retval->insertScalar("N", 1.0f); return retval; } static std::unique_ptr gradientStitchCode(const SkShader::GradientInfo& info) { auto retval = SkPDFMakeDict(); // normalize color stops int colorCount = info.fColorCount; std::vector colors(info.fColors, info.fColors + colorCount); std::vector colorOffsets(info.fColorOffsets, info.fColorOffsets + colorCount); int i = 1; while (i < colorCount - 1) { // ensure stops are in order if (colorOffsets[i - 1] > colorOffsets[i]) { colorOffsets[i] = colorOffsets[i - 1]; } // remove points that are between 2 coincident points if ((colorOffsets[i - 1] == colorOffsets[i]) && (colorOffsets[i] == colorOffsets[i + 1])) { colorCount -= 1; colors.erase(colors.begin() + i); colorOffsets.erase(colorOffsets.begin() + i); } else { i++; } } // find coincident points and slightly move them over for (i = 1; i < colorCount - 1; i++) { if (colorOffsets[i - 1] == colorOffsets[i]) { colorOffsets[i] += 0.00001f; } } // check if last 2 stops coincide if (colorOffsets[i - 1] == colorOffsets[i]) { colorOffsets[i - 1] -= 0.00001f; } SkAutoSTMalloc<4, ColorTuple> colorDataAlloc(colorCount); ColorTuple *colorData = colorDataAlloc.get(); for (int i = 0; i < colorCount; i++) { colorData[i][0] = SkColorGetR(colors[i]); colorData[i][1] = SkColorGetG(colors[i]); colorData[i][2] = SkColorGetB(colors[i]); } // no need for a stitch function if there are only 2 stops. if (colorCount == 2) return createInterpolationFunction(colorData[0], colorData[1]); auto encode = SkPDFMakeArray(); auto bounds = SkPDFMakeArray(); auto functions = SkPDFMakeArray(); retval->insertObject("Domain", SkPDFMakeArray(0, 1)); retval->insertInt("FunctionType", 3); for (int i = 1; i < colorCount; i++) { if (i > 1) { bounds->appendScalar(colorOffsets[i-1]); } encode->appendScalar(0); encode->appendScalar(1.0f); functions->appendObject(createInterpolationFunction(colorData[i-1], colorData[i])); } retval->insertObject("Encode", std::move(encode)); retval->insertObject("Bounds", std::move(bounds)); retval->insertObject("Functions", std::move(functions)); return retval; } /* Map a value of t on the stack into [0, 1) for Repeat or Mirror tile mode. */ static void tileModeCode(SkTileMode mode, SkDynamicMemoryWStream* result) { if (mode == SkTileMode::kRepeat) { result->writeText("dup truncate sub\n"); // Get the fractional part. result->writeText("dup 0 le {1 add} if\n"); // Map (-1,0) => (0,1) return; } if (mode == SkTileMode::kMirror) { // Map t mod 2 into [0, 1, 1, 0]. // Code Stack result->writeText("abs " // Map negative to positive. "dup " // t.s t.s "truncate " // t.s t "dup " // t.s t t "cvi " // t.s t T "2 mod " // t.s t (i mod 2) "1 eq " // t.s t true|false "3 1 roll " // true|false t.s t "sub " // true|false 0.s "exch " // 0.s true|false "{1 exch sub} if\n"); // 1 - 0.s|0.s } } /** * Returns PS function code that applies inverse perspective * to a x, y point. * The function assumes that the stack has at least two elements, * and that the top 2 elements are numeric values. * After executing this code on a PS stack, the last 2 elements are updated * while the rest of the stack is preserved intact. * inversePerspectiveMatrix is the inverse perspective matrix. */ static void apply_perspective_to_coordinates(const SkMatrix& inversePerspectiveMatrix, SkDynamicMemoryWStream* code) { if (!inversePerspectiveMatrix.hasPerspective()) { return; } // Perspective matrix should be: // 1 0 0 // 0 1 0 // p0 p1 p2 const SkScalar p0 = inversePerspectiveMatrix[SkMatrix::kMPersp0]; const SkScalar p1 = inversePerspectiveMatrix[SkMatrix::kMPersp1]; const SkScalar p2 = inversePerspectiveMatrix[SkMatrix::kMPersp2]; // y = y / (p2 + p0 x + p1 y) // x = x / (p2 + p0 x + p1 y) // Input on stack: x y code->writeText(" dup "); // x y y SkPDFUtils::AppendScalar(p1, code); // x y y p1 code->writeText(" mul " // x y y*p1 " 2 index "); // x y y*p1 x SkPDFUtils::AppendScalar(p0, code); // x y y p1 x p0 code->writeText(" mul "); // x y y*p1 x*p0 SkPDFUtils::AppendScalar(p2, code); // x y y p1 x*p0 p2 code->writeText(" add " // x y y*p1 x*p0+p2 "add " // x y y*p1+x*p0+p2 "3 1 roll " // y*p1+x*p0+p2 x y "2 index " // z x y y*p1+x*p0+p2 "div " // y*p1+x*p0+p2 x y/(y*p1+x*p0+p2) "3 1 roll " // y/(y*p1+x*p0+p2) y*p1+x*p0+p2 x "exch " // y/(y*p1+x*p0+p2) x y*p1+x*p0+p2 "div " // y/(y*p1+x*p0+p2) x/(y*p1+x*p0+p2) "exch\n"); // x/(y*p1+x*p0+p2) y/(y*p1+x*p0+p2) } static void linearCode(const SkShader::GradientInfo& info, const SkMatrix& perspectiveRemover, SkDynamicMemoryWStream* function) { function->writeText("{"); apply_perspective_to_coordinates(perspectiveRemover, function); function->writeText("pop\n"); // Just ditch the y value. tileModeCode((SkTileMode)info.fTileMode, function); gradient_function_code(info, function); function->writeText("}"); } static void radialCode(const SkShader::GradientInfo& info, const SkMatrix& perspectiveRemover, SkDynamicMemoryWStream* function) { function->writeText("{"); apply_perspective_to_coordinates(perspectiveRemover, function); // Find the distance from the origin. function->writeText("dup " // x y y "mul " // x y^2 "exch " // y^2 x "dup " // y^2 x x "mul " // y^2 x^2 "add " // y^2+x^2 "sqrt\n"); // sqrt(y^2+x^2) tileModeCode((SkTileMode)info.fTileMode, function); gradient_function_code(info, function); function->writeText("}"); } /* Conical gradient shader, based on the Canvas spec for radial gradients See: http://www.w3.org/TR/2dcontext/#dom-context-2d-createradialgradient */ static void twoPointConicalCode(const SkShader::GradientInfo& info, const SkMatrix& perspectiveRemover, SkDynamicMemoryWStream* function) { SkScalar dx = info.fPoint[1].fX - info.fPoint[0].fX; SkScalar dy = info.fPoint[1].fY - info.fPoint[0].fY; SkScalar r0 = info.fRadius[0]; SkScalar dr = info.fRadius[1] - info.fRadius[0]; SkScalar a = dx * dx + dy * dy - dr * dr; // First compute t, if the pixel falls outside the cone, then we'll end // with 'false' on the stack, otherwise we'll push 'true' with t below it // We start with a stack of (x y), copy it and then consume one copy in // order to calculate b and the other to calculate c. function->writeText("{"); apply_perspective_to_coordinates(perspectiveRemover, function); function->writeText("2 copy "); // Calculate b and b^2; b = -2 * (y * dy + x * dx + r0 * dr). SkPDFUtils::AppendScalar(dy, function); function->writeText(" mul exch "); SkPDFUtils::AppendScalar(dx, function); function->writeText(" mul add "); SkPDFUtils::AppendScalar(r0 * dr, function); function->writeText(" add -2 mul dup dup mul\n"); // c = x^2 + y^2 + radius0^2 function->writeText("4 2 roll dup mul exch dup mul add "); SkPDFUtils::AppendScalar(r0 * r0, function); function->writeText(" sub dup 4 1 roll\n"); // Contents of the stack at this point: c, b, b^2, c // if a = 0, then we collapse to a simpler linear case if (a == 0) { // t = -c/b function->writeText("pop pop div neg dup "); // compute radius(t) SkPDFUtils::AppendScalar(dr, function); function->writeText(" mul "); SkPDFUtils::AppendScalar(r0, function); function->writeText(" add\n"); // if r(t) < 0, then it's outside the cone function->writeText("0 lt {pop false} {true} ifelse\n"); } else { // quadratic case: the Canvas spec wants the largest // root t for which radius(t) > 0 // compute the discriminant (b^2 - 4ac) SkPDFUtils::AppendScalar(a * 4, function); function->writeText(" mul sub dup\n"); // if d >= 0, proceed function->writeText("0 ge {\n"); // an intermediate value we'll use to compute the roots: // q = -0.5 * (b +/- sqrt(d)) function->writeText("sqrt exch dup 0 lt {exch -1 mul} if"); function->writeText(" add -0.5 mul dup\n"); // first root = q / a SkPDFUtils::AppendScalar(a, function); function->writeText(" div\n"); // second root = c / q function->writeText("3 1 roll div\n"); // put the larger root on top of the stack function->writeText("2 copy gt {exch} if\n"); // compute radius(t) for larger root function->writeText("dup "); SkPDFUtils::AppendScalar(dr, function); function->writeText(" mul "); SkPDFUtils::AppendScalar(r0, function); function->writeText(" add\n"); // if r(t) > 0, we have our t, pop off the smaller root and we're done function->writeText(" 0 gt {exch pop true}\n"); // otherwise, throw out the larger one and try the smaller root function->writeText("{pop dup\n"); SkPDFUtils::AppendScalar(dr, function); function->writeText(" mul "); SkPDFUtils::AppendScalar(r0, function); function->writeText(" add\n"); // if r(t) < 0, push false, otherwise the smaller root is our t function->writeText("0 le {pop false} {true} ifelse\n"); function->writeText("} ifelse\n"); // d < 0, clear the stack and push false function->writeText("} {pop pop pop false} ifelse\n"); } // if the pixel is in the cone, proceed to compute a color function->writeText("{"); tileModeCode((SkTileMode)info.fTileMode, function); gradient_function_code(info, function); // otherwise, just write black function->writeText("} {0 0 0} ifelse }"); } static void sweepCode(const SkShader::GradientInfo& info, const SkMatrix& perspectiveRemover, SkDynamicMemoryWStream* function) { function->writeText("{exch atan 360 div\n"); tileModeCode((SkTileMode)info.fTileMode, function); gradient_function_code(info, function); function->writeText("}"); } // catch cases where the inner just touches the outer circle // and make the inner circle just inside the outer one to match raster static void FixUpRadius(const SkPoint& p1, SkScalar& r1, const SkPoint& p2, SkScalar& r2) { // detect touching circles SkScalar distance = SkPoint::Distance(p1, p2); SkScalar subtractRadii = fabs(r1 - r2); if (fabs(distance - subtractRadii) < 0.002f) { if (r1 > r2) { r1 += 0.002f; } else { r2 += 0.002f; } } } // Finds affine and persp such that in = affine * persp. // but it returns the inverse of perspective matrix. static bool split_perspective(const SkMatrix in, SkMatrix* affine, SkMatrix* perspectiveInverse) { const SkScalar p2 = in[SkMatrix::kMPersp2]; if (SkScalarNearlyZero(p2)) { return false; } const SkScalar zero = SkIntToScalar(0); const SkScalar one = SkIntToScalar(1); const SkScalar sx = in[SkMatrix::kMScaleX]; const SkScalar kx = in[SkMatrix::kMSkewX]; const SkScalar tx = in[SkMatrix::kMTransX]; const SkScalar ky = in[SkMatrix::kMSkewY]; const SkScalar sy = in[SkMatrix::kMScaleY]; const SkScalar ty = in[SkMatrix::kMTransY]; const SkScalar p0 = in[SkMatrix::kMPersp0]; const SkScalar p1 = in[SkMatrix::kMPersp1]; // Perspective matrix would be: // 1 0 0 // 0 1 0 // p0 p1 p2 // But we need the inverse of persp. perspectiveInverse->setAll(one, zero, zero, zero, one, zero, -p0/p2, -p1/p2, 1/p2); affine->setAll(sx - p0 * tx / p2, kx - p1 * tx / p2, tx / p2, ky - p0 * ty / p2, sy - p1 * ty / p2, ty / p2, zero, zero, one); return true; } static SkPDFIndirectReference make_ps_function(std::unique_ptr psCode, std::unique_ptr domain, std::unique_ptr range, SkPDFDocument* doc) { std::unique_ptr dict = SkPDFMakeDict(); dict->insertInt("FunctionType", 4); dict->insertObject("Domain", std::move(domain)); dict->insertObject("Range", std::move(range)); return SkPDFStreamOut(std::move(dict), std::move(psCode), doc); } static SkPDFIndirectReference make_function_shader(SkPDFDocument* doc, const SkPDFGradientShader::Key& state) { SkPoint transformPoints[2]; const SkShader::GradientInfo& info = state.fInfo; SkMatrix finalMatrix = state.fCanvasTransform; finalMatrix.preConcat(state.fShaderTransform); bool doStitchFunctions = (state.fType == SkShader::kLinear_GradientType || state.fType == SkShader::kRadial_GradientType || state.fType == SkShader::kConical_GradientType) && (SkTileMode)info.fTileMode == SkTileMode::kClamp && !finalMatrix.hasPerspective(); int32_t shadingType = 1; auto pdfShader = SkPDFMakeDict(); // The two point radial gradient further references // state.fInfo // in translating from x, y coordinates to the t parameter. So, we have // to transform the points and radii according to the calculated matrix. if (doStitchFunctions) { pdfShader->insertObject("Function", gradientStitchCode(info)); shadingType = (state.fType == SkShader::kLinear_GradientType) ? 2 : 3; auto extend = SkPDFMakeArray(); extend->reserve(2); extend->appendBool(true); extend->appendBool(true); pdfShader->insertObject("Extend", std::move(extend)); std::unique_ptr coords; if (state.fType == SkShader::kConical_GradientType) { SkScalar r1 = info.fRadius[0]; SkScalar r2 = info.fRadius[1]; SkPoint pt1 = info.fPoint[0]; SkPoint pt2 = info.fPoint[1]; FixUpRadius(pt1, r1, pt2, r2); coords = SkPDFMakeArray(pt1.x(), pt1.y(), r1, pt2.x(), pt2.y(), r2); } else if (state.fType == SkShader::kRadial_GradientType) { const SkPoint& pt1 = info.fPoint[0]; coords = SkPDFMakeArray(pt1.x(), pt1.y(), 0, pt1.x(), pt1.y(), info.fRadius[0]); } else { const SkPoint& pt1 = info.fPoint[0]; const SkPoint& pt2 = info.fPoint[1]; coords = SkPDFMakeArray(pt1.x(), pt1.y(), pt2.x(), pt2.y()); } pdfShader->insertObject("Coords", std::move(coords)); } else { // Depending on the type of the gradient, we want to transform the // coordinate space in different ways. transformPoints[0] = info.fPoint[0]; transformPoints[1] = info.fPoint[1]; switch (state.fType) { case SkShader::kLinear_GradientType: break; case SkShader::kRadial_GradientType: transformPoints[1] = transformPoints[0]; transformPoints[1].fX += info.fRadius[0]; break; case SkShader::kConical_GradientType: { transformPoints[1] = transformPoints[0]; transformPoints[1].fX += SK_Scalar1; break; } case SkShader::kSweep_GradientType: transformPoints[1] = transformPoints[0]; transformPoints[1].fX += SK_Scalar1; break; case SkShader::kColor_GradientType: case SkShader::kNone_GradientType: default: return SkPDFIndirectReference(); } // Move any scaling (assuming a unit gradient) or translation // (and rotation for linear gradient), of the final gradient from // info.fPoints to the matrix (updating bbox appropriately). Now // the gradient can be drawn on on the unit segment. SkMatrix mapperMatrix; unit_to_points_matrix(transformPoints, &mapperMatrix); finalMatrix.preConcat(mapperMatrix); // Preserves as much as possible in the final matrix, and only removes // the perspective. The inverse of the perspective is stored in // perspectiveInverseOnly matrix and has 3 useful numbers // (p0, p1, p2), while everything else is either 0 or 1. // In this way the shader will handle it eficiently, with minimal code. SkMatrix perspectiveInverseOnly = SkMatrix::I(); if (finalMatrix.hasPerspective()) { if (!split_perspective(finalMatrix, &finalMatrix, &perspectiveInverseOnly)) { return SkPDFIndirectReference(); } } SkRect bbox; bbox.set(state.fBBox); if (!SkPDFUtils::InverseTransformBBox(finalMatrix, &bbox)) { return SkPDFIndirectReference(); } SkDynamicMemoryWStream functionCode; SkShader::GradientInfo infoCopy = info; if (state.fType == SkShader::kConical_GradientType) { SkMatrix inverseMapperMatrix; if (!mapperMatrix.invert(&inverseMapperMatrix)) { return SkPDFIndirectReference(); } inverseMapperMatrix.mapPoints(infoCopy.fPoint, 2); infoCopy.fRadius[0] = inverseMapperMatrix.mapRadius(info.fRadius[0]); infoCopy.fRadius[1] = inverseMapperMatrix.mapRadius(info.fRadius[1]); } switch (state.fType) { case SkShader::kLinear_GradientType: linearCode(infoCopy, perspectiveInverseOnly, &functionCode); break; case SkShader::kRadial_GradientType: radialCode(infoCopy, perspectiveInverseOnly, &functionCode); break; case SkShader::kConical_GradientType: twoPointConicalCode(infoCopy, perspectiveInverseOnly, &functionCode); break; case SkShader::kSweep_GradientType: sweepCode(infoCopy, perspectiveInverseOnly, &functionCode); break; default: SkASSERT(false); } pdfShader->insertObject( "Domain", SkPDFMakeArray(bbox.left(), bbox.right(), bbox.top(), bbox.bottom())); auto domain = SkPDFMakeArray(bbox.left(), bbox.right(), bbox.top(), bbox.bottom()); std::unique_ptr rangeObject = SkPDFMakeArray(0, 1, 0, 1, 0, 1); pdfShader->insertRef("Function", make_ps_function(functionCode.detachAsStream(), std::move(domain), std::move(rangeObject), doc)); } pdfShader->insertInt("ShadingType", shadingType); pdfShader->insertName("ColorSpace", "DeviceRGB"); SkPDFDict pdfFunctionShader("Pattern"); pdfFunctionShader.insertInt("PatternType", 2); pdfFunctionShader.insertObject("Matrix", SkPDFUtils::MatrixToArray(finalMatrix)); pdfFunctionShader.insertObject("Shading", std::move(pdfShader)); return doc->emit(pdfFunctionShader); } static SkPDFIndirectReference find_pdf_shader(SkPDFDocument* doc, SkPDFGradientShader::Key key, bool keyHasAlpha); static std::unique_ptr get_gradient_resource_dict(SkPDFIndirectReference functionShader, SkPDFIndirectReference gState) { std::vector patternShaders; if (functionShader != SkPDFIndirectReference()) { patternShaders.push_back(functionShader); } std::vector graphicStates; if (gState != SkPDFIndirectReference()) { graphicStates.push_back(gState); } return SkPDFMakeResourceDict(std::move(graphicStates), std::move(patternShaders), std::vector(), std::vector()); } // Creates a content stream which fills the pattern P0 across bounds. // @param gsIndex A graphics state resource index to apply, or <0 if no // graphics state to apply. static std::unique_ptr create_pattern_fill_content(int gsIndex, int patternIndex, SkRect& bounds) { SkDynamicMemoryWStream content; if (gsIndex >= 0) { SkPDFUtils::ApplyGraphicState(gsIndex, &content); } SkPDFUtils::ApplyPattern(patternIndex, &content); SkPDFUtils::AppendRectangle(bounds, &content); SkPDFUtils::PaintPath(SkPaint::kFill_Style, SkPath::kEvenOdd_FillType, &content); return content.detachAsStream(); } static bool gradient_has_alpha(const SkPDFGradientShader::Key& key) { SkASSERT(key.fType != SkShader::kNone_GradientType); for (int i = 0; i < key.fInfo.fColorCount; i++) { if ((SkAlpha)SkColorGetA(key.fInfo.fColors[i]) != SK_AlphaOPAQUE) { return true; } } return false; } // warning: does not set fHash on new key. (Both callers need to change fields.) static SkPDFGradientShader::Key clone_key(const SkPDFGradientShader::Key& k) { SkPDFGradientShader::Key clone = { k.fType, k.fInfo, // change pointers later. std::unique_ptr(new SkColor[k.fInfo.fColorCount]), std::unique_ptr(new SkScalar[k.fInfo.fColorCount]), k.fCanvasTransform, k.fShaderTransform, k.fBBox, 0}; clone.fInfo.fColors = clone.fColors.get(); clone.fInfo.fColorOffsets = clone.fStops.get(); for (int i = 0; i < clone.fInfo.fColorCount; i++) { clone.fInfo.fColorOffsets[i] = k.fInfo.fColorOffsets[i]; clone.fInfo.fColors[i] = k.fInfo.fColors[i]; } return clone; } static SkPDFIndirectReference create_smask_graphic_state(SkPDFDocument* doc, const SkPDFGradientShader::Key& state) { SkASSERT(state.fType != SkShader::kNone_GradientType); SkPDFGradientShader::Key luminosityState = clone_key(state); for (int i = 0; i < luminosityState.fInfo.fColorCount; i++) { SkAlpha alpha = SkColorGetA(luminosityState.fInfo.fColors[i]); luminosityState.fInfo.fColors[i] = SkColorSetARGB(255, alpha, alpha, alpha); } luminosityState.fHash = hash(luminosityState); SkASSERT(!gradient_has_alpha(luminosityState)); SkPDFIndirectReference luminosityShader = find_pdf_shader(doc, std::move(luminosityState), false); std::unique_ptr resources = get_gradient_resource_dict(luminosityShader, SkPDFIndirectReference()); SkRect bbox = SkRect::Make(state.fBBox); SkPDFIndirectReference alphaMask = SkPDFMakeFormXObject(doc, create_pattern_fill_content(-1, luminosityShader.fValue, bbox), SkPDFUtils::RectToArray(bbox), std::move(resources), SkMatrix::I(), "DeviceRGB"); return SkPDFGraphicState::GetSMaskGraphicState( alphaMask, false, SkPDFGraphicState::kLuminosity_SMaskMode, doc); } static SkPDFIndirectReference make_alpha_function_shader(SkPDFDocument* doc, const SkPDFGradientShader::Key& state) { SkASSERT(state.fType != SkShader::kNone_GradientType); SkPDFGradientShader::Key opaqueState = clone_key(state); for (int i = 0; i < opaqueState.fInfo.fColorCount; i++) { opaqueState.fInfo.fColors[i] = SkColorSetA(opaqueState.fInfo.fColors[i], SK_AlphaOPAQUE); } opaqueState.fHash = hash(opaqueState); SkASSERT(!gradient_has_alpha(opaqueState)); SkRect bbox = SkRect::Make(state.fBBox); SkPDFIndirectReference colorShader = find_pdf_shader(doc, std::move(opaqueState), false); if (!colorShader) { return SkPDFIndirectReference(); } // Create resource dict with alpha graphics state as G0 and // pattern shader as P0, then write content stream. SkPDFIndirectReference alphaGsRef = create_smask_graphic_state(doc, state); std::unique_ptr resourceDict = get_gradient_resource_dict(colorShader, alphaGsRef); std::unique_ptr colorStream = create_pattern_fill_content(alphaGsRef.fValue, colorShader.fValue, bbox); std::unique_ptr alphaFunctionShader = SkPDFMakeDict(); SkPDFUtils::PopulateTilingPatternDict(alphaFunctionShader.get(), bbox, std::move(resourceDict), SkMatrix::I()); return SkPDFStreamOut(std::move(alphaFunctionShader), std::move(colorStream), doc); } static SkPDFGradientShader::Key make_key(const SkShader* shader, const SkMatrix& canvasTransform, const SkIRect& bbox) { SkPDFGradientShader::Key key = { SkShader::kNone_GradientType, {0, nullptr, nullptr, {{0, 0}, {0, 0}}, {0, 0}, SkTileMode::kClamp, 0}, nullptr, nullptr, canvasTransform, SkPDFUtils::GetShaderLocalMatrix(shader), bbox, 0}; key.fType = shader->asAGradient(&key.fInfo); SkASSERT(SkShader::kNone_GradientType != key.fType); SkASSERT(key.fInfo.fColorCount > 0); key.fColors.reset(new SkColor[key.fInfo.fColorCount]); key.fStops.reset(new SkScalar[key.fInfo.fColorCount]); key.fInfo.fColors = key.fColors.get(); key.fInfo.fColorOffsets = key.fStops.get(); (void)shader->asAGradient(&key.fInfo); key.fHash = hash(key); return key; } static SkPDFIndirectReference find_pdf_shader(SkPDFDocument* doc, SkPDFGradientShader::Key key, bool keyHasAlpha) { SkASSERT(gradient_has_alpha(key) == keyHasAlpha); auto& gradientPatternMap = doc->fGradientPatternMap; if (SkPDFIndirectReference* ptr = gradientPatternMap.find(key)) { return *ptr; } SkPDFIndirectReference pdfShader; if (keyHasAlpha) { pdfShader = make_alpha_function_shader(doc, key); } else { pdfShader = make_function_shader(doc, key); } gradientPatternMap.set(std::move(key), pdfShader); return pdfShader; } SkPDFIndirectReference SkPDFGradientShader::Make(SkPDFDocument* doc, SkShader* shader, const SkMatrix& canvasTransform, const SkIRect& bbox) { SkASSERT(shader); SkASSERT(SkShader::kNone_GradientType != shader->asAGradient(nullptr)); SkPDFGradientShader::Key key = make_key(shader, canvasTransform, bbox); bool alpha = gradient_has_alpha(key); return find_pdf_shader(doc, std::move(key), alpha); }