/* * Generic GPIO led * * Copyright (C) 2019 - 2020 Andy Green * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "private-lib-core.h" #include "drivers/led/private-lib-drivers-led.h" /* * 64 entry interpolated CIE correction * https://en.wikipedia.org/wiki/Lightness */ uint16_t cie[] = { 0, 113, 227, 340, 454, 568, 688, 824, 976, 1146, 1335, 1543, 1772, 2023, 2296, 2592, 2914, 3260, 3633, 4034, 4463, 4921, 5409, 5929, 6482, 7067, 7687, 8341, 9032, 9761, 10527, 11332, 12178, 13064, 13993, 14964, 15980, 17040, 18146, 19299, 20500, 21750, 23049, 24400, 25802, 27256, 28765, 30328, 31946, 33622, 35354, 37146, 38996, 40908, 42881, 44916, 47014, 49177, 51406, 53700, 56062, 58492, 60992, 63561, 65535 /* for interpolation */ }; /* * This is the default intensity correction function, it can be overridden * per-led to eg, normalize intensity of different leds */ static lws_led_intensity_t cie_antilog(lws_led_intensity_t lin) { return (cie[lin >> 10] * (0x3ff - (lin & 0x3ff)) + cie[(lin >> 10) + 1] * (lin & 0x3ff)) / 0x3ff; } static void lws_seq_advance(lws_led_state_t *lcs, lws_led_state_ch_t *ch) { if (!ch->seq) return; if (ch->phase_budget != LWS_SEQ_LEDPHASE_TOTAL_ENDLESS && (ch->phase_budget < ch->step || !ch->phase_budget)) { /* we are done */ ch->seq = NULL; if (!(--lcs->timer_refcount)) { #if defined(LWS_PLAT_TIMER_STOP) LWS_PLAT_TIMER_STOP(lcs->timer); #endif } return; } ch->ph += ch->step; if (ch->phase_budget != LWS_SEQ_LEDPHASE_TOTAL_ENDLESS) ch->phase_budget -= ch->step; } static lws_led_intensity_t lws_seq_sample(const lws_led_gpio_map_t *map, lws_led_state_chs_t *chs) { unsigned int i; if (chs->seqs[LLSI_CURR].seq) chs->seqs[LLSI_CURR].last = chs->seqs[LLSI_CURR].seq-> func(chs->seqs[LLSI_CURR].ph); if (chs->seqs[LLSI_TRANS].seq) { /* * If a transition is ongoing, we need to use the transition * intensity as the mixing factor between the still-live current * and newly-live next sequences */ chs->seqs[LLSI_TRANS].last = chs->seqs[LLSI_TRANS].seq-> func(chs->seqs[LLSI_TRANS].ph); if (chs->seqs[LLSI_NEXT].seq) chs->seqs[LLSI_NEXT].last = chs->seqs[LLSI_NEXT].seq-> func(chs->seqs[LLSI_NEXT].ph); i = (lws_led_intensity_t)((( (unsigned int)chs->seqs[LLSI_CURR].last * (65535 - chs->seqs[LLSI_TRANS].last) >> 16) + (((unsigned int)chs->seqs[LLSI_NEXT].last * (unsigned int)chs->seqs[LLSI_TRANS].last) >> 16))); } else i = chs->seqs[LLSI_CURR].last; return map->intensity_correction ? map->intensity_correction(i) : cie_antilog((lws_led_intensity_t)i); } void lws_seq_timer_handle(lws_led_state_t *lcs) { lws_led_gpio_controller_t *lgc = lcs->controller; lws_led_state_chs_t *chs = (lws_led_state_chs_t *)&lcs[1]; const lws_led_gpio_map_t *map = &lgc->led_map[0]; unsigned int n; for (n = 0; n < lgc->count_leds; n++) { lgc->led_ops.intensity(&lgc->led_ops, map->name, lws_seq_sample(map, chs)); lws_seq_advance(lcs, &chs->seqs[LLSI_CURR]); if (chs->seqs[LLSI_TRANS].seq) { lws_seq_advance(lcs, &chs->seqs[LLSI_NEXT]); lws_seq_advance(lcs, &chs->seqs[LLSI_TRANS]); /* * When we finished the transition, we can make the * "next" sequence the current sequence and no need for * a "next" or a transition any more. */ if (!chs->seqs[LLSI_TRANS].seq) { chs->seqs[LLSI_CURR] = chs->seqs[LLSI_NEXT]; chs->seqs[LLSI_NEXT].seq = NULL; } } map++; chs++; } } static int lws_led_set_chs_seq(struct lws_led_state *lcs, lws_led_state_ch_t *dest, const lws_led_sequence_def_t *def) { int steps; dest->seq = def; dest->ph = def->ledphase_offset; dest->phase_budget = def->ledphase_total; /* * We need to compute the incremental phase angle step to cover the * total number of phases in the indicated ms, incrementing at the * timer rate of LWS_LED_SEQUENCER_UPDATE_RATE_HZ. Eg, * * 65536 phase steps (one cycle) in 2000ms at 30Hz timer rate means we * will update 2000ms / 33ms = 60 times, so we must step at at * 65536 / 60 = 1092 phase angle resolution */ steps = def->ms / LWS_LED_SEQUENCER_UPDATE_INTERVAL_MS; dest->step = (def->ledphase_total != LWS_SEQ_LEDPHASE_TOTAL_ENDLESS ? def->ledphase_total : LWS_LED_FUNC_PHASE) / (steps ? steps : 1); if (!lcs->timer_refcount++) { #if defined(LWS_PLAT_TIMER_START) LWS_PLAT_TIMER_START(lcs->timer); #endif } return steps; } int lws_led_transition(struct lws_led_state *lcs, const char *name, const lws_led_sequence_def_t *next, const lws_led_sequence_def_t *trans) { lws_led_state_chs_t *chs = (lws_led_state_chs_t *)&lcs[1]; int index = lws_led_gpio_lookup(&lcs->controller->led_ops, name); if (index < 0) return 1; lws_led_set_chs_seq(lcs, &chs[index].seqs[LLSI_TRANS], trans); lws_led_set_chs_seq(lcs, &chs[index].seqs[LLSI_NEXT], next); return 0; }