/* * Copyright © 2018 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "aco_ir.h" #include "util/memstream.h" #include #include #include #include namespace aco { static void aco_log(Program* program, enum radv_compiler_debug_level level, const char* prefix, const char* file, unsigned line, const char* fmt, va_list args) { char* msg; if (program->debug.shorten_messages) { msg = ralloc_vasprintf(NULL, fmt, args); } else { msg = ralloc_strdup(NULL, prefix); ralloc_asprintf_append(&msg, " In file %s:%u\n", file, line); ralloc_asprintf_append(&msg, " "); ralloc_vasprintf_append(&msg, fmt, args); } if (program->debug.func) program->debug.func(program->debug.private_data, level, msg); fprintf(program->debug.output, "%s\n", msg); ralloc_free(msg); } void _aco_perfwarn(Program* program, const char* file, unsigned line, const char* fmt, ...) { va_list args; va_start(args, fmt); aco_log(program, RADV_COMPILER_DEBUG_LEVEL_PERFWARN, "ACO PERFWARN:\n", file, line, fmt, args); va_end(args); } void _aco_err(Program* program, const char* file, unsigned line, const char* fmt, ...) { va_list args; va_start(args, fmt); aco_log(program, RADV_COMPILER_DEBUG_LEVEL_ERROR, "ACO ERROR:\n", file, line, fmt, args); va_end(args); } bool validate_ir(Program* program) { bool is_valid = true; auto check = [&program, &is_valid](bool success, const char* msg, aco::Instruction* instr) -> void { if (!success) { char* out; size_t outsize; struct u_memstream mem; u_memstream_open(&mem, &out, &outsize); FILE* const memf = u_memstream_get(&mem); fprintf(memf, "%s: ", msg); aco_print_instr(instr, memf); u_memstream_close(&mem); aco_err(program, "%s", out); free(out); is_valid = false; } }; auto check_block = [&program, &is_valid](bool success, const char* msg, aco::Block* block) -> void { if (!success) { aco_err(program, "%s: BB%u", msg, block->index); is_valid = false; } }; for (Block& block : program->blocks) { for (aco_ptr& instr : block.instructions) { /* check base format */ Format base_format = instr->format; base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::SDWA); base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::DPP); if ((uint32_t)base_format & (uint32_t)Format::VOP1) base_format = Format::VOP1; else if ((uint32_t)base_format & (uint32_t)Format::VOP2) base_format = Format::VOP2; else if ((uint32_t)base_format & (uint32_t)Format::VOPC) base_format = Format::VOPC; else if ((uint32_t)base_format & (uint32_t)Format::VINTRP) { if (instr->opcode == aco_opcode::v_interp_p1ll_f16 || instr->opcode == aco_opcode::v_interp_p1lv_f16 || instr->opcode == aco_opcode::v_interp_p2_legacy_f16 || instr->opcode == aco_opcode::v_interp_p2_f16) { /* v_interp_*_fp16 are considered VINTRP by the compiler but * they are emitted as VOP3. */ base_format = Format::VOP3; } else { base_format = Format::VINTRP; } } check(base_format == instr_info.format[(int)instr->opcode], "Wrong base format for instruction", instr.get()); /* check VOP3 modifiers */ if (instr->isVOP3() && instr->format != Format::VOP3) { check(base_format == Format::VOP2 || base_format == Format::VOP1 || base_format == Format::VOPC || base_format == Format::VINTRP, "Format cannot have VOP3/VOP3B applied", instr.get()); } /* check SDWA */ if (instr->isSDWA()) { check(base_format == Format::VOP2 || base_format == Format::VOP1 || base_format == Format::VOPC, "Format cannot have SDWA applied", instr.get()); check(program->chip_class >= GFX8, "SDWA is GFX8+ only", instr.get()); SDWA_instruction& sdwa = instr->sdwa(); check(sdwa.omod == 0 || program->chip_class >= GFX9, "SDWA omod only supported on GFX9+", instr.get()); if (base_format == Format::VOPC) { check(sdwa.clamp == false || program->chip_class == GFX8, "SDWA VOPC clamp only supported on GFX8", instr.get()); check((instr->definitions[0].isFixed() && instr->definitions[0].physReg() == vcc) || program->chip_class >= GFX9, "SDWA+VOPC definition must be fixed to vcc on GFX8", instr.get()); } else { const Definition& def = instr->definitions[0]; check(def.bytes() <= 4, "SDWA definitions must not be larger than 4 bytes", instr.get()); check(def.bytes() >= sdwa.dst_sel.size() + sdwa.dst_sel.offset(), "SDWA definition selection size must be at most definition size", instr.get()); check( sdwa.dst_sel.size() == 1 || sdwa.dst_sel.size() == 2 || sdwa.dst_sel.size() == 4, "SDWA definition selection size must be 1, 2 or 4 bytes", instr.get()); check(sdwa.dst_sel.offset() % sdwa.dst_sel.size() == 0, "Invalid selection offset", instr.get()); check(def.bytes() == 4 || def.bytes() == sdwa.dst_sel.size(), "SDWA dst_sel size must be definition size for subdword definitions", instr.get()); check(def.bytes() == 4 || sdwa.dst_sel.offset() == 0, "SDWA dst_sel offset must be 0 for subdword definitions", instr.get()); } for (unsigned i = 0; i < std::min(2, instr->operands.size()); i++) { const Operand& op = instr->operands[i]; check(op.bytes() <= 4, "SDWA operands must not be larger than 4 bytes", instr.get()); check(op.bytes() >= sdwa.sel[i].size() + sdwa.sel[i].offset(), "SDWA operand selection size must be at most operand size", instr.get()); check(sdwa.sel[i].size() == 1 || sdwa.sel[i].size() == 2 || sdwa.sel[i].size() == 4, "SDWA operand selection size must be 1, 2 or 4 bytes", instr.get()); check(sdwa.sel[i].offset() % sdwa.sel[i].size() == 0, "Invalid selection offset", instr.get()); } if (instr->operands.size() >= 3) { check(instr->operands[2].isFixed() && instr->operands[2].physReg() == vcc, "3rd operand must be fixed to vcc with SDWA", instr.get()); } if (instr->definitions.size() >= 2) { check(instr->definitions[1].isFixed() && instr->definitions[1].physReg() == vcc, "2nd definition must be fixed to vcc with SDWA", instr.get()); } const bool sdwa_opcodes = instr->opcode != aco_opcode::v_fmac_f32 && instr->opcode != aco_opcode::v_fmac_f16 && instr->opcode != aco_opcode::v_fmamk_f32 && instr->opcode != aco_opcode::v_fmaak_f32 && instr->opcode != aco_opcode::v_fmamk_f16 && instr->opcode != aco_opcode::v_fmaak_f16 && instr->opcode != aco_opcode::v_madmk_f32 && instr->opcode != aco_opcode::v_madak_f32 && instr->opcode != aco_opcode::v_madmk_f16 && instr->opcode != aco_opcode::v_madak_f16 && instr->opcode != aco_opcode::v_readfirstlane_b32 && instr->opcode != aco_opcode::v_clrexcp && instr->opcode != aco_opcode::v_swap_b32; const bool feature_mac = program->chip_class == GFX8 && (instr->opcode == aco_opcode::v_mac_f32 && instr->opcode == aco_opcode::v_mac_f16); check(sdwa_opcodes || feature_mac, "SDWA can't be used with this opcode", instr.get()); } /* check opsel */ if (instr->isVOP3()) { VOP3_instruction& vop3 = instr->vop3(); check(vop3.opsel == 0 || program->chip_class >= GFX9, "Opsel is only supported on GFX9+", instr.get()); for (unsigned i = 0; i < 3; i++) { if (i >= instr->operands.size() || (instr->operands[i].hasRegClass() && instr->operands[i].regClass().is_subdword() && !instr->operands[i].isFixed())) check((vop3.opsel & (1 << i)) == 0, "Unexpected opsel for operand", instr.get()); } if (instr->definitions[0].regClass().is_subdword() && !instr->definitions[0].isFixed()) check((vop3.opsel & (1 << 3)) == 0, "Unexpected opsel for sub-dword definition", instr.get()); } /* check for undefs */ for (unsigned i = 0; i < instr->operands.size(); i++) { if (instr->operands[i].isUndefined()) { bool flat = instr->isFlatLike(); bool can_be_undef = is_phi(instr) || instr->isEXP() || instr->isReduction() || instr->opcode == aco_opcode::p_create_vector || (flat && i == 1) || (instr->isMIMG() && (i == 1 || i == 2)) || ((instr->isMUBUF() || instr->isMTBUF()) && i == 1); check(can_be_undef, "Undefs can only be used in certain operands", instr.get()); } else { check(instr->operands[i].isFixed() || instr->operands[i].isTemp() || instr->operands[i].isConstant(), "Uninitialized Operand", instr.get()); } } /* check subdword definitions */ for (unsigned i = 0; i < instr->definitions.size(); i++) { if (instr->definitions[i].regClass().is_subdword()) check(instr->isPseudo() || instr->definitions[i].bytes() <= 4, "Only Pseudo instructions can write subdword registers larger than 4 bytes", instr.get()); } if (instr->isSALU() || instr->isVALU()) { /* check literals */ Operand literal(s1); for (unsigned i = 0; i < instr->operands.size(); i++) { Operand op = instr->operands[i]; if (!op.isLiteral()) continue; check(!instr->isDPP() && !instr->isSDWA() && (!instr->isVOP3() || program->chip_class >= GFX10) && (!instr->isVOP3P() || program->chip_class >= GFX10), "Literal applied on wrong instruction format", instr.get()); check(literal.isUndefined() || (literal.size() == op.size() && literal.constantValue() == op.constantValue()), "Only 1 Literal allowed", instr.get()); literal = op; check(instr->isSALU() || instr->isVOP3() || instr->isVOP3P() || i == 0 || i == 2, "Wrong source position for Literal argument", instr.get()); } /* check num sgprs for VALU */ if (instr->isVALU()) { bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 || instr->opcode == aco_opcode::v_lshrrev_b64 || instr->opcode == aco_opcode::v_ashrrev_i64; unsigned const_bus_limit = 1; if (program->chip_class >= GFX10 && !is_shift64) const_bus_limit = 2; uint32_t scalar_mask = instr->isVOP3() || instr->isVOP3P() ? 0x7 : 0x5; if (instr->isSDWA()) scalar_mask = program->chip_class >= GFX9 ? 0x7 : 0x4; else if (instr->isDPP()) scalar_mask = 0x4; if (instr->isVOPC() || instr->opcode == aco_opcode::v_readfirstlane_b32 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64) { check(instr->definitions[0].getTemp().type() == RegType::sgpr, "Wrong Definition type for VALU instruction", instr.get()); } else { check(instr->definitions[0].getTemp().type() == RegType::vgpr, "Wrong Definition type for VALU instruction", instr.get()); } unsigned num_sgprs = 0; unsigned sgpr[] = {0, 0}; for (unsigned i = 0; i < instr->operands.size(); i++) { Operand op = instr->operands[i]; if (instr->opcode == aco_opcode::v_readfirstlane_b32 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64) { check(i != 1 || (op.isTemp() && op.regClass().type() == RegType::sgpr) || op.isConstant(), "Must be a SGPR or a constant", instr.get()); check(i == 1 || (op.isTemp() && op.regClass().type() == RegType::vgpr && op.bytes() <= 4), "Wrong Operand type for VALU instruction", instr.get()); continue; } if (instr->opcode == aco_opcode::v_permlane16_b32 || instr->opcode == aco_opcode::v_permlanex16_b32) { check(i != 0 || (op.isTemp() && op.regClass().type() == RegType::vgpr), "Operand 0 of v_permlane must be VGPR", instr.get()); check(i == 0 || (op.isTemp() && op.regClass().type() == RegType::sgpr) || op.isConstant(), "Lane select operands of v_permlane must be SGPR or constant", instr.get()); } if (instr->opcode == aco_opcode::v_writelane_b32 || instr->opcode == aco_opcode::v_writelane_b32_e64) { check(i != 2 || (op.isTemp() && op.regClass().type() == RegType::vgpr && op.bytes() <= 4), "Wrong Operand type for VALU instruction", instr.get()); check(i == 2 || (op.isTemp() && op.regClass().type() == RegType::sgpr) || op.isConstant(), "Must be a SGPR or a constant", instr.get()); continue; } if (op.isTemp() && instr->operands[i].regClass().type() == RegType::sgpr) { check(scalar_mask & (1 << i), "Wrong source position for SGPR argument", instr.get()); if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) { if (num_sgprs < 2) sgpr[num_sgprs++] = op.tempId(); } } if (op.isConstant() && !op.isLiteral()) check(scalar_mask & (1 << i), "Wrong source position for constant argument", instr.get()); } check(num_sgprs + (literal.isUndefined() ? 0 : 1) <= const_bus_limit, "Too many SGPRs/literals", instr.get()); } if (instr->isSOP1() || instr->isSOP2()) { check(instr->definitions[0].getTemp().type() == RegType::sgpr, "Wrong Definition type for SALU instruction", instr.get()); for (const Operand& op : instr->operands) { check(op.isConstant() || op.regClass().type() <= RegType::sgpr, "Wrong Operand type for SALU instruction", instr.get()); } } } switch (instr->format) { case Format::PSEUDO: { if (instr->opcode == aco_opcode::p_create_vector) { unsigned size = 0; for (const Operand& op : instr->operands) { check(op.bytes() < 4 || size % 4 == 0, "Operand is not aligned", instr.get()); size += op.bytes(); } check(size == instr->definitions[0].bytes(), "Definition size does not match operand sizes", instr.get()); if (instr->definitions[0].getTemp().type() == RegType::sgpr) { for (const Operand& op : instr->operands) { check(op.isConstant() || op.regClass().type() == RegType::sgpr, "Wrong Operand type for scalar vector", instr.get()); } } } else if (instr->opcode == aco_opcode::p_extract_vector) { check((instr->operands[0].isTemp()) && instr->operands[1].isConstant(), "Wrong Operand types", instr.get()); check((instr->operands[1].constantValue() + 1) * instr->definitions[0].bytes() <= instr->operands[0].bytes(), "Index out of range", instr.get()); check(instr->definitions[0].getTemp().type() == RegType::vgpr || instr->operands[0].regClass().type() == RegType::sgpr, "Cannot extract SGPR value from VGPR vector", instr.get()); check(program->chip_class >= GFX9 || !instr->definitions[0].regClass().is_subdword() || instr->operands[0].regClass().type() == RegType::vgpr, "Cannot extract subdword from SGPR before GFX9+", instr.get()); } else if (instr->opcode == aco_opcode::p_split_vector) { check(instr->operands[0].isTemp(), "Operand must be a temporary", instr.get()); unsigned size = 0; for (const Definition& def : instr->definitions) { size += def.bytes(); } check(size == instr->operands[0].bytes(), "Operand size does not match definition sizes", instr.get()); if (instr->operands[0].getTemp().type() == RegType::vgpr) { for (const Definition& def : instr->definitions) check(def.regClass().type() == RegType::vgpr, "Wrong Definition type for VGPR split_vector", instr.get()); } else { for (const Definition& def : instr->definitions) check(program->chip_class >= GFX9 || !def.regClass().is_subdword(), "Cannot split SGPR into subdword VGPRs before GFX9+", instr.get()); } } else if (instr->opcode == aco_opcode::p_parallelcopy) { check(instr->definitions.size() == instr->operands.size(), "Number of Operands does not match number of Definitions", instr.get()); for (unsigned i = 0; i < instr->operands.size(); i++) { check(instr->definitions[i].bytes() == instr->operands[i].bytes(), "Operand and Definition size must match", instr.get()); if (instr->operands[i].isTemp()) { check((instr->definitions[i].getTemp().type() == instr->operands[i].regClass().type()) || (instr->definitions[i].getTemp().type() == RegType::vgpr && instr->operands[i].regClass().type() == RegType::sgpr), "Operand and Definition types do not match", instr.get()); check(instr->definitions[i].regClass().is_linear_vgpr() == instr->operands[i].regClass().is_linear_vgpr(), "Operand and Definition types do not match", instr.get()); } else { check(!instr->definitions[i].regClass().is_linear_vgpr(), "Can only copy linear VGPRs into linear VGPRs, not constant/undef", instr.get()); } } } else if (instr->opcode == aco_opcode::p_phi) { check(instr->operands.size() == block.logical_preds.size(), "Number of Operands does not match number of predecessors", instr.get()); check(instr->definitions[0].getTemp().type() == RegType::vgpr, "Logical Phi Definition must be vgpr", instr.get()); for (const Operand& op : instr->operands) check(instr->definitions[0].size() == op.size(), "Operand sizes must match Definition size", instr.get()); } else if (instr->opcode == aco_opcode::p_linear_phi) { for (const Operand& op : instr->operands) { check(!op.isTemp() || op.getTemp().is_linear(), "Wrong Operand type", instr.get()); check(instr->definitions[0].size() == op.size(), "Operand sizes must match Definition size", instr.get()); } check(instr->operands.size() == block.linear_preds.size(), "Number of Operands does not match number of predecessors", instr.get()); } else if (instr->opcode == aco_opcode::p_extract || instr->opcode == aco_opcode::p_insert) { check(instr->operands[0].isTemp(), "Data operand must be temporary", instr.get()); check(instr->operands[1].isConstant(), "Index must be constant", instr.get()); if (instr->opcode == aco_opcode::p_extract) check(instr->operands[3].isConstant(), "Sign-extend flag must be constant", instr.get()); check(instr->definitions[0].getTemp().type() != RegType::sgpr || instr->operands[0].getTemp().type() == RegType::sgpr, "Can't extract/insert VGPR to SGPR", instr.get()); if (instr->opcode == aco_opcode::p_insert) check(instr->operands[0].bytes() == instr->definitions[0].bytes(), "Sizes of p_insert data operand and definition must match", instr.get()); if (instr->definitions[0].getTemp().type() == RegType::sgpr) check(instr->definitions.size() >= 2 && instr->definitions[1].isFixed() && instr->definitions[1].physReg() == scc, "SGPR extract/insert needs an SCC definition", instr.get()); unsigned data_bits = instr->operands[0].getTemp().bytes() * 8u; unsigned op_bits = instr->operands[2].constantValue(); if (instr->opcode == aco_opcode::p_insert) { check(op_bits == 8 || op_bits == 16, "Size must be 8 or 16", instr.get()); check(op_bits < data_bits, "Size must be smaller than source", instr.get()); } else if (instr->opcode == aco_opcode::p_extract) { check(op_bits == 8 || op_bits == 16 || op_bits == 32, "Size must be 8 or 16 or 32", instr.get()); check(data_bits >= op_bits, "Can't extract more bits than what the data has.", instr.get()); } unsigned comp = data_bits / MAX2(op_bits, 1); check(instr->operands[1].constantValue() < comp, "Index must be in-bounds", instr.get()); } break; } case Format::PSEUDO_REDUCTION: { for (const Operand& op : instr->operands) check(op.regClass().type() == RegType::vgpr, "All operands of PSEUDO_REDUCTION instructions must be in VGPRs.", instr.get()); if (instr->opcode == aco_opcode::p_reduce && instr->reduction().cluster_size == program->wave_size) check(instr->definitions[0].regClass().type() == RegType::sgpr || program->wave_size == 32, "The result of unclustered reductions must go into an SGPR.", instr.get()); else check(instr->definitions[0].regClass().type() == RegType::vgpr, "The result of scans and clustered reductions must go into a VGPR.", instr.get()); break; } case Format::SMEM: { if (instr->operands.size() >= 1) check((instr->operands[0].isFixed() && !instr->operands[0].isConstant()) || (instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::sgpr), "SMEM operands must be sgpr", instr.get()); if (instr->operands.size() >= 2) check(instr->operands[1].isConstant() || (instr->operands[1].isTemp() && instr->operands[1].regClass().type() == RegType::sgpr), "SMEM offset must be constant or sgpr", instr.get()); if (!instr->definitions.empty()) check(instr->definitions[0].getTemp().type() == RegType::sgpr, "SMEM result must be sgpr", instr.get()); break; } case Format::MTBUF: case Format::MUBUF: { check(instr->operands.size() > 1, "VMEM instructions must have at least one operand", instr.get()); check(instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::vgpr, "VADDR must be in vgpr for VMEM instructions", instr.get()); check( instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::sgpr, "VMEM resource constant must be sgpr", instr.get()); check(instr->operands.size() < 4 || (instr->operands[3].isTemp() && instr->operands[3].regClass().type() == RegType::vgpr), "VMEM write data must be vgpr", instr.get()); break; } case Format::MIMG: { check(instr->operands.size() >= 4, "MIMG instructions must have at least 4 operands", instr.get()); check(instr->operands[0].hasRegClass() && (instr->operands[0].regClass() == s4 || instr->operands[0].regClass() == s8), "MIMG operands[0] (resource constant) must be in 4 or 8 SGPRs", instr.get()); if (instr->operands[1].hasRegClass()) check(instr->operands[1].regClass() == s4, "MIMG operands[1] (sampler constant) must be 4 SGPRs", instr.get()); if (!instr->operands[2].isUndefined()) { bool is_cmpswap = instr->opcode == aco_opcode::image_atomic_cmpswap || instr->opcode == aco_opcode::image_atomic_fcmpswap; check(instr->definitions.empty() || (instr->definitions[0].regClass() == instr->operands[2].regClass() || is_cmpswap), "MIMG operands[2] (VDATA) must be the same as definitions[0] for atomics and " "TFE/LWE loads", instr.get()); } check(instr->operands.size() == 4 || program->chip_class >= GFX10, "NSA is only supported on GFX10+", instr.get()); for (unsigned i = 3; i < instr->operands.size(); i++) { if (instr->operands.size() == 4) { check(instr->operands[i].hasRegClass() && instr->operands[i].regClass().type() == RegType::vgpr, "MIMG operands[3] (VADDR) must be VGPR", instr.get()); } else { check(instr->operands[i].regClass() == v1, "MIMG VADDR must be v1 if NSA is used", instr.get()); } } check(instr->definitions.empty() || (instr->definitions[0].isTemp() && instr->definitions[0].regClass().type() == RegType::vgpr), "MIMG definitions[0] (VDATA) must be VGPR", instr.get()); break; } case Format::DS: { for (const Operand& op : instr->operands) { check((op.isTemp() && op.regClass().type() == RegType::vgpr) || op.physReg() == m0, "Only VGPRs are valid DS instruction operands", instr.get()); } if (!instr->definitions.empty()) check(instr->definitions[0].getTemp().type() == RegType::vgpr, "DS instruction must return VGPR", instr.get()); break; } case Format::EXP: { for (unsigned i = 0; i < 4; i++) check(instr->operands[i].hasRegClass() && instr->operands[i].regClass().type() == RegType::vgpr, "Only VGPRs are valid Export arguments", instr.get()); break; } case Format::FLAT: check(instr->operands[1].isUndefined(), "Flat instructions don't support SADDR", instr.get()); FALLTHROUGH; case Format::GLOBAL: case Format::SCRATCH: { check( instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH address must be vgpr", instr.get()); check(instr->operands[1].hasRegClass() && instr->operands[1].regClass().type() == RegType::sgpr, "FLAT/GLOBAL/SCRATCH sgpr address must be undefined or sgpr", instr.get()); if (!instr->definitions.empty()) check(instr->definitions[0].getTemp().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH result must be vgpr", instr.get()); else check(instr->operands[2].regClass().type() == RegType::vgpr, "FLAT/GLOBAL/SCRATCH data must be vgpr", instr.get()); break; } default: break; } } } /* validate CFG */ for (unsigned i = 0; i < program->blocks.size(); i++) { Block& block = program->blocks[i]; check_block(block.index == i, "block.index must match actual index", &block); /* predecessors/successors should be sorted */ for (unsigned j = 0; j + 1 < block.linear_preds.size(); j++) check_block(block.linear_preds[j] < block.linear_preds[j + 1], "linear predecessors must be sorted", &block); for (unsigned j = 0; j + 1 < block.logical_preds.size(); j++) check_block(block.logical_preds[j] < block.logical_preds[j + 1], "logical predecessors must be sorted", &block); for (unsigned j = 0; j + 1 < block.linear_succs.size(); j++) check_block(block.linear_succs[j] < block.linear_succs[j + 1], "linear successors must be sorted", &block); for (unsigned j = 0; j + 1 < block.logical_succs.size(); j++) check_block(block.logical_succs[j] < block.logical_succs[j + 1], "logical successors must be sorted", &block); /* critical edges are not allowed */ if (block.linear_preds.size() > 1) { for (unsigned pred : block.linear_preds) check_block(program->blocks[pred].linear_succs.size() == 1, "linear critical edges are not allowed", &program->blocks[pred]); for (unsigned pred : block.logical_preds) check_block(program->blocks[pred].logical_succs.size() == 1, "logical critical edges are not allowed", &program->blocks[pred]); } } return is_valid; } /* RA validation */ namespace { struct Location { Location() : block(NULL), instr(NULL) {} Block* block; Instruction* instr; // NULL if it's the block's live-in }; struct Assignment { Location defloc; Location firstloc; PhysReg reg; }; bool ra_fail(Program* program, Location loc, Location loc2, const char* fmt, ...) { va_list args; va_start(args, fmt); char msg[1024]; vsprintf(msg, fmt, args); va_end(args); char* out; size_t outsize; struct u_memstream mem; u_memstream_open(&mem, &out, &outsize); FILE* const memf = u_memstream_get(&mem); fprintf(memf, "RA error found at instruction in BB%d:\n", loc.block->index); if (loc.instr) { aco_print_instr(loc.instr, memf); fprintf(memf, "\n%s", msg); } else { fprintf(memf, "%s", msg); } if (loc2.block) { fprintf(memf, " in BB%d:\n", loc2.block->index); aco_print_instr(loc2.instr, memf); } fprintf(memf, "\n\n"); u_memstream_close(&mem); aco_err(program, "%s", out); free(out); return true; } bool validate_subdword_operand(chip_class chip, const aco_ptr& instr, unsigned index) { Operand op = instr->operands[index]; unsigned byte = op.physReg().byte(); if (instr->opcode == aco_opcode::p_as_uniform) return byte == 0; if (instr->isPseudo() && chip >= GFX8) return true; if (instr->isSDWA()) return byte + instr->sdwa().sel[index].offset() + instr->sdwa().sel[index].size() <= 4 && byte % instr->sdwa().sel[index].size() == 0; if (byte == 2 && can_use_opsel(chip, instr->opcode, index, 1)) return true; switch (instr->opcode) { case aco_opcode::v_cvt_f32_ubyte1: if (byte == 1) return true; break; case aco_opcode::v_cvt_f32_ubyte2: if (byte == 2) return true; break; case aco_opcode::v_cvt_f32_ubyte3: if (byte == 3) return true; break; case aco_opcode::ds_write_b8_d16_hi: case aco_opcode::ds_write_b16_d16_hi: if (byte == 2 && index == 1) return true; break; case aco_opcode::buffer_store_byte_d16_hi: case aco_opcode::buffer_store_short_d16_hi: if (byte == 2 && index == 3) return true; break; case aco_opcode::flat_store_byte_d16_hi: case aco_opcode::flat_store_short_d16_hi: case aco_opcode::scratch_store_byte_d16_hi: case aco_opcode::scratch_store_short_d16_hi: case aco_opcode::global_store_byte_d16_hi: case aco_opcode::global_store_short_d16_hi: if (byte == 2 && index == 2) return true; break; default: break; } return byte == 0; } bool validate_subdword_definition(chip_class chip, const aco_ptr& instr) { Definition def = instr->definitions[0]; unsigned byte = def.physReg().byte(); if (instr->isPseudo() && chip >= GFX8) return true; if (instr->isSDWA()) return byte + instr->sdwa().dst_sel.offset() + instr->sdwa().dst_sel.size() <= 4 && byte % instr->sdwa().dst_sel.size() == 0; if (byte == 2 && can_use_opsel(chip, instr->opcode, -1, 1)) return true; switch (instr->opcode) { case aco_opcode::buffer_load_ubyte_d16_hi: case aco_opcode::buffer_load_short_d16_hi: case aco_opcode::flat_load_ubyte_d16_hi: case aco_opcode::flat_load_short_d16_hi: case aco_opcode::scratch_load_ubyte_d16_hi: case aco_opcode::scratch_load_short_d16_hi: case aco_opcode::global_load_ubyte_d16_hi: case aco_opcode::global_load_short_d16_hi: case aco_opcode::ds_read_u8_d16_hi: case aco_opcode::ds_read_u16_d16_hi: return byte == 2; default: break; } return byte == 0; } unsigned get_subdword_bytes_written(Program* program, const aco_ptr& instr, unsigned index) { chip_class chip = program->chip_class; Definition def = instr->definitions[index]; if (instr->isPseudo()) return chip >= GFX8 ? def.bytes() : def.size() * 4u; if (instr->isVALU()) { assert(def.bytes() <= 2); if (instr->isSDWA()) return instr->sdwa().dst_sel.size(); if (instr_is_16bit(chip, instr->opcode)) return 2; return 4; } switch (instr->opcode) { case aco_opcode::buffer_load_ubyte_d16: case aco_opcode::buffer_load_short_d16: case aco_opcode::flat_load_ubyte_d16: case aco_opcode::flat_load_short_d16: case aco_opcode::scratch_load_ubyte_d16: case aco_opcode::scratch_load_short_d16: case aco_opcode::global_load_ubyte_d16: case aco_opcode::global_load_short_d16: case aco_opcode::ds_read_u8_d16: case aco_opcode::ds_read_u16_d16: case aco_opcode::buffer_load_ubyte_d16_hi: case aco_opcode::buffer_load_short_d16_hi: case aco_opcode::flat_load_ubyte_d16_hi: case aco_opcode::flat_load_short_d16_hi: case aco_opcode::scratch_load_ubyte_d16_hi: case aco_opcode::scratch_load_short_d16_hi: case aco_opcode::global_load_ubyte_d16_hi: case aco_opcode::global_load_short_d16_hi: case aco_opcode::ds_read_u8_d16_hi: case aco_opcode::ds_read_u16_d16_hi: return program->dev.sram_ecc_enabled ? 4 : 2; default: return def.size() * 4; } } } /* end namespace */ bool validate_ra(Program* program) { if (!(debug_flags & DEBUG_VALIDATE_RA)) return false; bool err = false; aco::live live_vars = aco::live_var_analysis(program); std::vector> phi_sgpr_ops(program->blocks.size()); uint16_t sgpr_limit = get_addr_sgpr_from_waves(program, program->num_waves); std::map assignments; for (Block& block : program->blocks) { Location loc; loc.block = █ for (aco_ptr& instr : block.instructions) { if (instr->opcode == aco_opcode::p_phi) { for (unsigned i = 0; i < instr->operands.size(); i++) { if (instr->operands[i].isTemp() && instr->operands[i].getTemp().type() == RegType::sgpr && instr->operands[i].isFirstKill()) phi_sgpr_ops[block.logical_preds[i]].emplace_back(instr->operands[i].getTemp()); } } loc.instr = instr.get(); for (unsigned i = 0; i < instr->operands.size(); i++) { Operand& op = instr->operands[i]; if (!op.isTemp()) continue; if (!op.isFixed()) err |= ra_fail(program, loc, Location(), "Operand %d is not assigned a register", i); if (assignments.count(op.tempId()) && assignments[op.tempId()].reg != op.physReg()) err |= ra_fail(program, loc, assignments.at(op.tempId()).firstloc, "Operand %d has an inconsistent register assignment with instruction", i); if ((op.getTemp().type() == RegType::vgpr && op.physReg().reg_b + op.bytes() > (256 + program->config->num_vgprs) * 4) || (op.getTemp().type() == RegType::sgpr && op.physReg() + op.size() > program->config->num_sgprs && op.physReg() < sgpr_limit)) err |= ra_fail(program, loc, assignments.at(op.tempId()).firstloc, "Operand %d has an out-of-bounds register assignment", i); if (op.physReg() == vcc && !program->needs_vcc) err |= ra_fail(program, loc, Location(), "Operand %d fixed to vcc but needs_vcc=false", i); if (op.regClass().is_subdword() && !validate_subdword_operand(program->chip_class, instr, i)) err |= ra_fail(program, loc, Location(), "Operand %d not aligned correctly", i); if (!assignments[op.tempId()].firstloc.block) assignments[op.tempId()].firstloc = loc; if (!assignments[op.tempId()].defloc.block) assignments[op.tempId()].reg = op.physReg(); } for (unsigned i = 0; i < instr->definitions.size(); i++) { Definition& def = instr->definitions[i]; if (!def.isTemp()) continue; if (!def.isFixed()) err |= ra_fail(program, loc, Location(), "Definition %d is not assigned a register", i); if (assignments[def.tempId()].defloc.block) err |= ra_fail(program, loc, assignments.at(def.tempId()).defloc, "Temporary %%%d also defined by instruction", def.tempId()); if ((def.getTemp().type() == RegType::vgpr && def.physReg().reg_b + def.bytes() > (256 + program->config->num_vgprs) * 4) || (def.getTemp().type() == RegType::sgpr && def.physReg() + def.size() > program->config->num_sgprs && def.physReg() < sgpr_limit)) err |= ra_fail(program, loc, assignments.at(def.tempId()).firstloc, "Definition %d has an out-of-bounds register assignment", i); if (def.physReg() == vcc && !program->needs_vcc) err |= ra_fail(program, loc, Location(), "Definition %d fixed to vcc but needs_vcc=false", i); if (def.regClass().is_subdword() && !validate_subdword_definition(program->chip_class, instr)) err |= ra_fail(program, loc, Location(), "Definition %d not aligned correctly", i); if (!assignments[def.tempId()].firstloc.block) assignments[def.tempId()].firstloc = loc; assignments[def.tempId()].defloc = loc; assignments[def.tempId()].reg = def.physReg(); } } } for (Block& block : program->blocks) { Location loc; loc.block = █ std::array regs; /* register file in bytes */ regs.fill(0); std::set live; for (unsigned id : live_vars.live_out[block.index]) live.insert(Temp(id, program->temp_rc[id])); /* remove killed p_phi sgpr operands */ for (Temp tmp : phi_sgpr_ops[block.index]) live.erase(tmp); /* check live out */ for (Temp tmp : live) { PhysReg reg = assignments.at(tmp.id()).reg; for (unsigned i = 0; i < tmp.bytes(); i++) { if (regs[reg.reg_b + i]) { err |= ra_fail(program, loc, Location(), "Assignment of element %d of %%%d already taken by %%%d in live-out", i, tmp.id(), regs[reg.reg_b + i]); } regs[reg.reg_b + i] = tmp.id(); } } regs.fill(0); for (auto it = block.instructions.rbegin(); it != block.instructions.rend(); ++it) { aco_ptr& instr = *it; /* check killed p_phi sgpr operands */ if (instr->opcode == aco_opcode::p_logical_end) { for (Temp tmp : phi_sgpr_ops[block.index]) { PhysReg reg = assignments.at(tmp.id()).reg; for (unsigned i = 0; i < tmp.bytes(); i++) { if (regs[reg.reg_b + i]) err |= ra_fail( program, loc, Location(), "Assignment of element %d of %%%d already taken by %%%d in live-out", i, tmp.id(), regs[reg.reg_b + i]); } live.emplace(tmp); } } for (const Definition& def : instr->definitions) { if (!def.isTemp()) continue; live.erase(def.getTemp()); } /* don't count phi operands as live-in, since they are actually * killed when they are copied at the predecessor */ if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) { for (const Operand& op : instr->operands) { if (!op.isTemp()) continue; live.insert(op.getTemp()); } } } for (Temp tmp : live) { PhysReg reg = assignments.at(tmp.id()).reg; for (unsigned i = 0; i < tmp.bytes(); i++) regs[reg.reg_b + i] = tmp.id(); } for (aco_ptr& instr : block.instructions) { loc.instr = instr.get(); /* remove killed p_phi operands from regs */ if (instr->opcode == aco_opcode::p_logical_end) { for (Temp tmp : phi_sgpr_ops[block.index]) { PhysReg reg = assignments.at(tmp.id()).reg; for (unsigned i = 0; i < tmp.bytes(); i++) regs[reg.reg_b + i] = 0; } } if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) { for (const Operand& op : instr->operands) { if (!op.isTemp()) continue; if (op.isFirstKillBeforeDef()) { for (unsigned j = 0; j < op.getTemp().bytes(); j++) regs[op.physReg().reg_b + j] = 0; } } } for (unsigned i = 0; i < instr->definitions.size(); i++) { Definition& def = instr->definitions[i]; if (!def.isTemp()) continue; Temp tmp = def.getTemp(); PhysReg reg = assignments.at(tmp.id()).reg; for (unsigned j = 0; j < tmp.bytes(); j++) { if (regs[reg.reg_b + j]) err |= ra_fail( program, loc, assignments.at(regs[reg.reg_b + j]).defloc, "Assignment of element %d of %%%d already taken by %%%d from instruction", i, tmp.id(), regs[reg.reg_b + j]); regs[reg.reg_b + j] = tmp.id(); } if (def.regClass().is_subdword() && def.bytes() < 4) { unsigned written = get_subdword_bytes_written(program, instr, i); /* If written=4, the instruction still might write the upper half. In that case, it's * the lower half that isn't preserved */ for (unsigned j = reg.byte() & ~(written - 1); j < written; j++) { unsigned written_reg = reg.reg() * 4u + j; if (regs[written_reg] && regs[written_reg] != def.tempId()) err |= ra_fail(program, loc, assignments.at(regs[written_reg]).defloc, "Assignment of element %d of %%%d overwrites the full register " "taken by %%%d from instruction", i, tmp.id(), regs[written_reg]); } } } for (const Definition& def : instr->definitions) { if (!def.isTemp()) continue; if (def.isKill()) { for (unsigned j = 0; j < def.getTemp().bytes(); j++) regs[def.physReg().reg_b + j] = 0; } } if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) { for (const Operand& op : instr->operands) { if (!op.isTemp()) continue; if (op.isLateKill() && op.isFirstKill()) { for (unsigned j = 0; j < op.getTemp().bytes(); j++) regs[op.physReg().reg_b + j] = 0; } } } } } return err; } } // namespace aco