# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Check parameters.""" import re import inspect import math from enum import Enum from functools import reduce, wraps from itertools import repeat, zip_longest from collections import deque from collections.abc import Iterable import numpy as np from mindspore import context from mindspore import log as logger from mindspore.common import dtype as mstype from mindspore._c_expression import Tensor as Tensor_ class Rel(Enum): """Numerical relationship between variables, logical relationship enumeration definition of range.""" # scalar compare EQ = 1 # == NE = 2 # != LT = 3 # < LE = 4 # <= GT = 5 # > GE = 6 # >= # scalar range check INC_NEITHER = 7 # (), include neither INC_LEFT = 8 # [), include left INC_RIGHT = 9 # (], include right INC_BOTH = 10 # [], include both # collection in, not in IN = 11 NOT_IN = 12 @staticmethod def get_strs(rel): """Get value from rel_strs.""" return rel_strs.get(rel, "") @staticmethod def get_fns(rel): """Get value from rel_fns.""" return rel_fns.get(rel, lambda *args: False) rel_fns = { # scalar compare Rel.EQ: lambda x, y: x == y, Rel.NE: lambda x, y: x != y, Rel.LT: lambda x, y: x < y, Rel.LE: lambda x, y: x <= y, Rel.GT: lambda x, y: x > y, Rel.GE: lambda x, y: x >= y, # scalar range check Rel.INC_NEITHER: lambda x, lower, upper: (lower < x < upper), Rel.INC_LEFT: lambda x, lower, upper: (lower <= x < upper), Rel.INC_RIGHT: lambda x, lower, upper: (lower < x <= upper), Rel.INC_BOTH: lambda x, lower, upper: (lower <= x <= upper), # collection in, not in Rel.IN: lambda x, y: x in y, Rel.NOT_IN: lambda x, y: x not in y, } rel_strs = { # scalar compare Rel.EQ: "= {}", Rel.NE: "!= {}", Rel.LT: "< {}", Rel.LE: "<= {}", Rel.GT: "> {}", Rel.GE: ">= {}", # scalar range check Rel.INC_NEITHER: "({}, {})", Rel.INC_LEFT: "[{}, {})", Rel.INC_RIGHT: "({}, {}]", Rel.INC_BOTH: "[{}, {}]", # collection in, not in Rel.IN: "in {}", Rel.NOT_IN: "not in {}", } def _check_3d_int_or_tuple(arg_name, arg_value, prim_name, allow_five=False, ret_five=False, greater_zero=True, third_one=False, three_input=False): """ Checks whether an argument is a positive int or tuple with 3 or 5(when allow_five is True) positive int elements. """ def _raise_message(third_one_flag=False, three_input_flag=False): if third_one_flag: raise ValueError(f"For '{prim_name}' the depth of attr '{arg_name}' should be 1, but got {ret_value[-3]}") if three_input_flag: raise ValueError(f"For '{prim_name}' attr '{arg_name}' should be an positive int number or a tuple of " f"three positive int numbers, but got {arg_value}") raise ValueError(f"For '{prim_name}' attr '{arg_name}' should be an positive int number or a tuple of three " f"{'or five ' if allow_five else ''}positive int numbers, but got {arg_value}") def _get_return_value(): if isinstance(arg_value, int): ret = (1, 1, arg_value, arg_value, arg_value) if ret_five else (arg_value, arg_value, arg_value) elif len(arg_value) == 3: ret = (1, 1, arg_value[0], arg_value[1], arg_value[2]) if ret_five else arg_value elif len(arg_value) == 5: if not allow_five: _raise_message() ret = arg_value if ret_five else (arg_value[1], arg_value[2], arg_value[3]) else: _raise_message() return ret Validator.check_value_type(arg_name, arg_value, (int, tuple), prim_name) if three_input and isinstance(arg_value, tuple): if len(arg_value) != 3: _raise_message(three_input_flag=three_input) ret_value = _get_return_value() for item in ret_value: if isinstance(item, int) and not isinstance(item, bool): if greater_zero and item > 0: continue if not greater_zero and item >= 0: continue _raise_message() if third_one: if ret_value[-3] != 1: _raise_message(third_one_flag=third_one) return tuple(ret_value) def check_number(arg_value, value, rel, arg_type=int, arg_name=None, prim_name=None): """ Check argument integer. Example: - number = check_number(number, 0, Rel.GE, "number", None) # number >= 0 """ rel_fn = Rel.get_fns(rel) prim_name = f'in `{prim_name}`' if prim_name else '' arg_name = f'`{arg_name}`' if arg_name else '' if isinstance(arg_value, arg_type): if math.isinf(arg_value) or math.isnan(arg_value) or np.isinf(arg_value) or np.isnan(arg_value): raise ValueError(f'{arg_name} {prim_name} must be legal value, but got `{arg_value}`.') else: raise TypeError(f'{arg_name} {prim_name} must be {arg_type.__name__}, but got `{type(arg_value).__name__}`') type_mismatch = not isinstance(arg_value, arg_type) or isinstance(arg_value, bool) type_except = TypeError if type_mismatch else ValueError if type_mismatch or not rel_fn(arg_value, value): rel_str = Rel.get_strs(rel).format(value) raise type_except(f'{arg_name} {prim_name} should be an {arg_type.__name__} and must {rel_str}, ' f'but got `{arg_value}` with type `{type(arg_value).__name__}`.') return arg_value def check_is_number(arg_value, arg_type, arg_name=None, prim_name=None): """ Checks input value is float type or not. Usage: - number = check_is_number(number, int) - number = check_is_number(number, int, "bias") - number = check_is_number(number, int, "bias", "bias_class") """ prim_name = f"For \'{prim_name}\', the" if prim_name else 'The' arg_name = f"\'{arg_name}\'" if arg_name else 'input value' if isinstance(arg_value, arg_type) and not isinstance(arg_value, bool): if math.isinf(arg_value) or math.isnan(arg_value) or np.isinf(arg_value) or np.isnan(arg_value): raise ValueError(f'{prim_name} {arg_name} must be legal float, but got `{arg_value}`.') return arg_value raise TypeError(f'{prim_name} type of {arg_name} must be {arg_type.__name__}, but got `{type(arg_value).__name__}`') def check_number_range(arg_value, lower_limit, upper_limit, rel, value_type, arg_name=None, prim_name=None): """ Method for checking whether an int value is in some range. Usage: - number = check_number_range(number, 0.0, 1.0, Rel.INC_NEITHER, "number", float) # number in [0.0, 1.0] - number = check_number_range(number, 0, 1, Rel.INC_NEITHER, "number", int) # number in [0, 1] """ rel_fn = Rel.get_fns(rel) prim_name = f'in `{prim_name}`' if prim_name else '' arg_name = f'`{arg_name}`' if arg_name else '' type_mismatch = not isinstance(arg_value, (np.ndarray, np.generic, value_type)) or isinstance(arg_value, bool) if type_mismatch: raise TypeError("{} {} must be `{}`, but got `{}`.".format( arg_name, prim_name, value_type.__name__, type(arg_value).__name__)) if not rel_fn(arg_value, lower_limit, upper_limit): rel_str = Rel.get_strs(rel).format(lower_limit, upper_limit) raise ValueError("{} {} should be in range of {}, but got {:.3e} with type `{}`.".format( arg_name, prim_name, rel_str, arg_value, type(arg_value).__name__)) return arg_value class Validator: """validator for checking input parameters""" @staticmethod def check(arg_name, arg_value, value_name, value, rel=Rel.EQ, prim_name=None, excp_cls=ValueError): """ Method for judging relation between two int values or list/tuple made up of ints. This method is not suitable for judging relation between floats, since it does not consider float error. """ rel_fn = Rel.get_fns(rel) if not rel_fn(arg_value, value): rel_str = Rel.get_strs(rel).format(f'{value_name}: {value}') msg_prefix = f'For \'{prim_name}\', the' if prim_name else "The" raise excp_cls(f'{msg_prefix} \'{arg_name}\' should be {rel_str}, but got {arg_value}.') return arg_value @staticmethod def check_int(arg_value, value, rel, arg_name=None, prim_name=None): """ Checks input integer value `arg_value` compare to `value`. Usage: - number = check_int(number, 0, Rel.GE, "number", None) # number >= 0 """ return check_number(arg_value, value, rel, int, arg_name, prim_name) @staticmethod def check_is_int(arg_value, arg_name=None, prim_name=None): """ Checks input value is float type or not. Usage: - number = check_is_int(number, int) - number = check_is_int(number, int, "bias") - number = check_is_int(number, int, "bias", "bias_class") """ return check_is_number(arg_value, int, arg_name, prim_name) @staticmethod def check_equal_int(arg_value, value, arg_name=None, prim_name=None): """ Checks input integer value `arg_value` compare to `value`. Usage: - number = check_int(number, 0, Rel.GE, "number", None) # number >= 0 """ return check_number(arg_value, value, Rel.EQ, int, arg_name, prim_name) @staticmethod def check_positive_int(arg_value, arg_name=None, prim_name=None): """ Check argument is positive integer, which mean arg_value > 0. Usage: - number = check_positive_int(number) - number = check_positive_int(number, "bias") """ return check_number(arg_value, 0, Rel.GT, int, arg_name, prim_name) @staticmethod def check_negative_int(arg_value, arg_name=None, prim_name=None): """ Check argument is negative integer, which mean arg_value < 0. Usage: - number = check_negative_int(number) - number = check_negative_int(number, "bias") """ return check_number(arg_value, 0, Rel.LT, int, arg_name, prim_name) @staticmethod def check_non_positive_int(arg_value, arg_name=None, prim_name=None): """ Check argument is non-negative integer, which mean arg_value <= 0. Usage: - number = check_non_positive_int(number) - number = check_non_positive_int(number, "bias") """ return check_number(arg_value, 0, Rel.LE, int, arg_name, prim_name) @staticmethod def check_non_negative_int(arg_value, arg_name=None, prim_name=None): """ Check argument is non-negative integer, which mean arg_value >= 0. Usage: - number = check_non_negative_int(number) - number = check_non_negative_int(number, "bias") """ return check_number(arg_value, 0, Rel.GE, int, arg_name, prim_name) @staticmethod def check_float(arg_value, value, rel, arg_name=None, prim_name=None): """ Checks input float value `arg_value` compare to `value`. Usage: - number = check_float(number, 0.0, Rel.GE, "number", None) # number >= 0 """ return check_number(arg_value, value, rel, float, arg_name, prim_name) @staticmethod def check_is_float(arg_value, arg_name=None, prim_name=None): """ Checks input value is float type or not. Usage: - number = check_is_float(number, int) - number = check_is_float(number, int, "bias") - number = check_is_float(number, int, "bias", "bias_class") """ return check_is_number(arg_value, float, arg_name, prim_name) @staticmethod def check_positive_float(arg_value, arg_name=None, prim_name=None): """ Check argument is positive float, which mean arg_value > 0. Usage: - number = check_positive_float(number) - number = check_positive_float(number, "bias") - number = check_positive_float(number, "bias", "bias_class") """ return check_number(arg_value, 0, Rel.GT, float, arg_name, prim_name) @staticmethod def check_negative_float(arg_value, arg_name=None, prim_name=None): """ Check argument is negative float, which mean arg_value < 0. Usage: - number = check_negative_float(number) - number = check_negative_float(number, "bias") """ return check_number(arg_value, 0, Rel.LT, float, arg_name, prim_name) @staticmethod def check_non_positive_float(arg_value, arg_name=None, prim_name=None): """ Check argument is non-negative float, which mean arg_value <= 0. Usage: - number = check_non_positive_float(number) - number = check_non_positive_float(number, "bias") """ return check_number(arg_value, 0, Rel.LE, float, arg_name, prim_name) @staticmethod def check_non_negative_float(arg_value, arg_name=None, prim_name=None): """ Check argument is non-negative float, which mean arg_value >= 0. Usage: - number = check_non_negative_float(number) - number = check_non_negative_float(number, "bias") """ return check_number(arg_value, 0, Rel.GE, float, arg_name, prim_name) @staticmethod def check_number(arg_name, arg_value, value, rel, prim_name): """Number value judgment.""" rel_fn = Rel.get_fns(rel) if not rel_fn(arg_value, value): rel_str = Rel.get_strs(rel).format(value) raise ValueError(f'For \'{prim_name}\' the `{arg_name}` must {rel_str}, but got {arg_value}.') return arg_value @staticmethod def check_isinstance(arg_name, arg_value, classes): """Check arg isinstance of classes""" if not isinstance(arg_value, classes): raise ValueError(f'The `{arg_name}` should be isinstance of {classes}, but got {arg_value}.') return arg_value @staticmethod def check_bool(arg_value, arg_name=None, prim_name=None): """ Check argument is instance of bool. Usage: - has_bias = check_bool(has_bias) - has_bias = check_bool(has_bias, "has_bias") """ if not isinstance(arg_value, bool): if prim_name and arg_name: msg_prefix = f"For '{prim_name}', the '{arg_name}'" elif prim_name and arg_name is None: msg_prefix = f"For '{prim_name}', Parameter" else: msg_prefix = "Parameter" raise TypeError(f"{msg_prefix} should be a bool, but got {type(arg_value).__name__}.") return arg_value @staticmethod def check_int_range(arg_value, lower_limit, upper_limit, rel, arg_name=None, prim_name=None): """ Method for checking whether input value is in int range. Usage: - number = check_int_range(number, 0, 1, Rel.INC_NEITHER) # number in [0, 1] - number = check_int_range(number, 0, 1, Rel.INC_NEITHER, "number") # number in [0, 1] """ return check_number_range(arg_value, lower_limit, upper_limit, rel, int, arg_name, prim_name) @staticmethod def check_float_range(arg_value, lower_limit, upper_limit, rel, arg_name=None, prim_name=None): """ Method for checking whether input value is in float range. Usage: - number = check_float_range(number, 0.0, 1.0, Rel.INC_NEITHER) # number in [0.0, 1.0] - number = check_float_range(number, 0.0, 1.0, Rel.INC_NEITHER, "number") # number in [0.0, 1.0] """ return check_number_range(arg_value, lower_limit, upper_limit, rel, float, arg_name, prim_name) @staticmethod def check_string(arg_value, valid_values, arg_name=None, prim_name=None): """ Check whether string is in some value list. Usage: - method = check_string(method, ["string1", "string2", "string3"], "method") """ if isinstance(arg_value, str) and arg_value in valid_values: return arg_value arg_name = arg_name if arg_name else "Parameter" msg_prefix = f'For \'{prim_name}\' the' if prim_name else "The" raise ValueError(f"{msg_prefix} '{arg_name}' should be str and must be in '{valid_values}'," f" but got '{arg_value}'.") @staticmethod def check_str_by_regular(target, reg=None, flag=re.ASCII, prim_name=None): if reg is None: # Named string regular expression reg = r"^\w+[0-9a-zA-Z\_\.]*$" if re.match(reg, target, flag) is None: prim_name = f'in `{prim_name}`' if prim_name else "" raise ValueError("'{}' {} is illegal, it should be match regular'{}' by flags'{}.'".format( target, prim_name, reg, flag)) return True @staticmethod def check_file_name_by_regular(target, reg=None, prim_name=None): """Check whether file name is legitimate.""" if not isinstance(target, str): raise ValueError("Args file_name {} must be string, please check it".format(target)) if target.endswith("\\") or target.endswith("/"): raise ValueError("File name cannot be a directory path.") if reg is None: reg = r"^[0-9a-zA-Z\_\-\.\:\/\\]+$" if re.match(reg, target) is None: prim_name = f'in `{prim_name}`' if prim_name else "" raise ValueError("'{}' {} is illegal, it should be match regular'{}'.".format( target, prim_name, reg)) return True @staticmethod def check_pad_value_by_mode(pad_mode, padding, prim_name): """Validates value of padding according to pad_mode""" if pad_mode != 'pad' and padding != 0: raise ValueError(f"For '{prim_name}', padding must be zero when pad_mode is '{pad_mode}'.") return padding @staticmethod def check_subclass(arg_name, type_, template_types, prim_name, addition_error_info=None): """Checks whether some type is subclass of another type""" if not isinstance(template_types, Iterable): template_types = (template_types,) hit = False for template_type in template_types: if isinstance(template_type, mstype.Type): if mstype.issubclass_(type_, template_type): hit = True break elif type_ is template_type: hit = True break if not hit: if addition_error_info is None: addition_error_info = '' type_str = (type(type_).__name__ if isinstance(type_, (tuple, list)) else "") + str(type_) raise TypeError(f"For '{prim_name}', the type of '{arg_name}'" f" should be {'one of ' if len(template_types) > 1 else ''}" f"{', '.join((str(x) for x in template_types))}, but got {type_str}" f" {addition_error_info}. The supported data types depend on the hardware that" f" executes the operator, please refer the official api document to get" f" more information about the data type.") @staticmethod def check_valid_input(arg_name, arg_value, prim_name): """Checks valid value.""" if arg_value is None: raise ValueError(f"For \'{prim_name}\', the '{arg_name}' can not be None, but got {arg_value}.") return arg_value @staticmethod def check_types_same_and_valid(args, valid_values, prim_name): """Checks whether the types of inputs are the same and valid.""" def _check_type_valid(arg): arg_key, arg_val = arg elem_type = arg_val Validator.check_subclass(arg_key, elem_type, valid_values, prim_name) return (arg_key, elem_type) def _check_types_same(arg1, arg2): arg1_name, arg1_type = arg1 arg2_name, arg2_type = arg2 if arg1_type != arg2_type: raise TypeError(f"For '{prim_name}', type of '{arg2_name}' should be same as '{arg1_name}'," f" but got '{arg1_name}' with type {arg1_type}" f" and '{arg2_name}' with type {arg2_type}.") return arg1 elem_types = map(_check_type_valid, args.items()) reduce(_check_types_same, elem_types) @staticmethod def check_tensors_dtypes_same_and_valid(args, valid_dtypes, prim_name): """Checks whether the element types of input tensors are the same and valid.""" valid_dtypes = valid_dtypes if isinstance(valid_dtypes, Iterable) else [valid_dtypes] tensor_types = [mstype.tensor_type(t) for t in valid_dtypes] Validator.check_types_same_and_valid(args, tensor_types, prim_name) @staticmethod def check_tensor_dtype_valid(arg_name, arg_type, valid_dtypes, prim_name): """Checks whether the element types of input tensors are valid.""" valid_dtypes = valid_dtypes if isinstance(valid_dtypes, Iterable) else [valid_dtypes] tensor_types = [mstype.tensor_type(t) for t in valid_dtypes] Validator.check_subclass(arg_name, arg_type, tensor_types, prim_name) @staticmethod def check_scalar_or_tensor_types_same(args, valid_values, prim_name, allow_mix=False): """ Checks whether the types of inputs are the same. If the input args are tensors, checks their element types. If `allow_mix` is True, Tensor(float32) and float32 are type compatible, otherwise an exception will be raised. """ def _check_argument_type(arg): arg_key, arg_val = arg if isinstance(arg_val, type(mstype.tensor)): arg_val = arg_val.element_type() if not arg_val in valid_values: raise TypeError(f'For \'{prim_name}\', the type of `{arg_key}` should be in {valid_values},' f' but got {arg_val}.') return arg def _check_types_same(arg1, arg2): arg1_name, arg1_type = arg1 arg2_name, arg2_type = arg2 except_flag = False if isinstance(arg1_type, type(mstype.tensor)) and isinstance(arg2_type, type(mstype.tensor)): arg1_type = arg1_type.element_type() arg2_type = arg2_type.element_type() elif not (isinstance(arg1_type, type(mstype.tensor)) or isinstance(arg2_type, type(mstype.tensor))): pass elif allow_mix: arg1_type = arg1_type.element_type() if isinstance(arg1_type, type(mstype.tensor)) else arg1_type arg2_type = arg2_type.element_type() if isinstance(arg2_type, type(mstype.tensor)) else arg2_type else: except_flag = True if except_flag or arg1_type != arg2_type: raise TypeError(f'For \'{prim_name}\' type of `{arg2_name}` should be same as `{arg1_name}`,' f' but `{arg1_name}` is {arg1_type} and `{arg2_name}` is {arg2_type}.') return arg1 reduce(_check_types_same, map(_check_argument_type, args.items())) @staticmethod def check_value_type(arg_name, arg_value, valid_types, prim_name=None): """Checks whether a value is instance of some types.""" valid_types = valid_types if isinstance(valid_types, Iterable) else (valid_types,) def raise_error_msg(): """func for raising error message when check failed""" type_names = [t.__name__ if hasattr(t, '__name__') else str(t) for t in valid_types] num_types = len(valid_types) msg_prefix = f"For '{prim_name}', the" if prim_name else "The" raise TypeError(f'{msg_prefix} type of `{arg_name}` should be {"one of " if num_types > 1 else ""}' f'{type_names if num_types > 1 else type_names[0]}, ' f'but got {arg_value} with type {type(arg_value).__name__}.') # Notice: bool is subclass of int, so `check_value_type('x', True, [int])` will check fail, and # `check_value_type('x', True, [bool, int])` will check pass if isinstance(arg_value, bool) and bool not in tuple(valid_types): raise_error_msg() if not isinstance(arg_value, tuple(valid_types)): raise_error_msg() return arg_value @staticmethod def check_type_name(arg_name, arg_type, valid_types, prim_name): """Checks whether a type in some specified types""" valid_types = valid_types if isinstance(valid_types, Iterable) else (valid_types,) def raise_error_msg(): """func for raising error message when check failed""" type_names = [t.__name__ if hasattr(t, '__name__') else t for t in valid_types] num_types = len(valid_types) msg_prefix = f"For '{prim_name}', the" if prim_name else "The" raise TypeError(f"{msg_prefix} '{arg_name}' should be {'one of ' if num_types > 1 else ''}" f"{type_names if num_types > 1 else type_names[0]}, " f"but got {arg_type.__name__ if hasattr(arg_type, '__name__') else repr(arg_type)}.") if isinstance(arg_type, type(mstype.tensor)): arg_type = arg_type.element_type() if arg_type not in valid_types: raise_error_msg() return arg_type @staticmethod def check_reduce_shape(ori_shape, shape, axis, prim_name): """Checks whether shape is ori_shape reduced on axis""" axis = axis if isinstance(axis, Iterable) else (axis,) exp_shape = [ori_shape[i] for i in range(len(ori_shape)) if i not in axis] if list(shape) != exp_shape: raise ValueError(f"For '{prim_name}', the origin shape {ori_shape} reduce on {axis} should be " f"{tuple(exp_shape)}, but got {shape}.") @staticmethod def check_astype_dtype(dtype): """Check whether dtype is a valid input, and convert to mstype""" all_types = mstype.__dtype__ + ["int", "float", "bool"] if isinstance(dtype, str): if dtype.lower() not in all_types: raise TypeError(f"`{dtype}` not understood.") dtype = mstype.pytype_to_dtype(np.dtype(dtype.lower())) elif isinstance(dtype, type): dtype = mstype.pytype_to_dtype(dtype) elif not dtype in mstype.number_type + (mstype.bool_,): raise TypeError(f"`{dtype}` not understood.") return dtype @staticmethod def check_transpose_axis(axes, ndim): """Check the axis argument for tensor.transpose""" if not axes or (len(axes) == 1 and axes[0] is None): return tuple(range(ndim-1, -1, -1)) if len(axes) == 1: perm = axes[0] # if only one argument provided, it must be tuple or list if isinstance(perm, list): perm = tuple(perm) else: if not isinstance(perm, tuple): raise TypeError(f"The `axes` should be a tuple/list, or series of int, but got {type(axes[0])}") return perm # if multiple arguments provided, it must be `ndim` number of ints if len(axes) != ndim: raise ValueError("The number of axes must equal to the dimension of tensor.") return axes @staticmethod def check_reshape_shp(shp): """Check the shape argument for tensor.reshape""" if len(shp) == 1: new_shape = shp[0] # if only one argument provided, it must be int, tuple or list if isinstance(new_shape, int): return shp if isinstance(new_shape, list): new_shape = tuple(new_shape) else: if not isinstance(new_shape, tuple): raise TypeError( f"The `shape` should be an int, or tuple/list, or series of int, but got {type(shp[0])}") return new_shape return shp @staticmethod def check_flatten_order(order): """Check flatten function input order""" if not isinstance(order, str): raise TypeError(f"The order variable should be a string, but got {type(order)}") if order not in ('C', 'F'): raise ValueError(f"only `C` and `F` are supported as order, but got {order}") return order @staticmethod def check_swapaxes_axis(axes, ndim): """Check all the axes argument for tensor.swapaxes""" if isinstance(axes, int): Validator.check_axis_in_range(axes, ndim) return axes % ndim if isinstance(axes, (tuple, list)): for axis in axes: if not isinstance(axis, int): raise TypeError(f"axis argument should be integer, but got {type(axis)}.") Validator.check_axis_in_range(axis, ndim) axes = tuple(map(lambda x: x % ndim, axes)) return axes raise TypeError(f"axes should be integer, list or tuple for check, but got {type(axes)}.") @staticmethod def prepare_shape_for_squeeze(shape, axes): """ Creates the squeezed new shape based on the tensor and given axes. Args: shape (tuple): the shape of the tensor axes Union[int, tuple(int), list(int)]: the axes with dimensions need to be squeezed. Returns: new_shape(tuple): the shape with dimensions squeezed. """ new_shape = [] ndim = len(shape) # Convert to set if isinstance(axes, int): if axes >= ndim or axes < -ndim: raise ValueError(f"axis {axes} is out of bounds for tensor of dimension {ndim}") axes = {axes} elif isinstance(axes, (list, tuple)): for axis in axes: if axis >= ndim or axis < -ndim: raise ValueError(f"axis {axis} is out of bounds for tensor of dimension {ndim}") axes = set(axes) else: raise TypeError(f"only int, tuple and list are allowed for axes, but got {type(axes)}") for idx, s in enumerate(shape): if s != 1 or (idx not in axes) and (idx - ndim not in axes): new_shape.append(s) # if an axis is selected with shape entry greater than one, an error is raised. if s != 1 and ((idx in axes) or (idx - ndim in axes)): raise ValueError(f"axis {axes} has shape entry {s} > 1, cannot be squeezed.") return tuple(new_shape) @staticmethod def check_axis_in_range(axis, ndim): """Checks axes are with the bounds of ndim""" if not isinstance(axis, int): raise TypeError(f'axes should be integers, not {type(axis)}') if not -ndim <= axis < ndim: raise ValueError(f'axis {axis} is out of bounds for array of dimension {ndim}') return axis % ndim @staticmethod def check_axis_valid(axes, ndim): """ Checks axes are valid given ndim, and returns axes that can be passed to the built-in operator (non-negative, int or tuple) """ if axes is None: axes = tuple(range(ndim)) return axes if isinstance(axes, (tuple, list)): for axis in axes: Validator.check_axis_in_range(axis, ndim) axes = tuple(map(lambda x: x % ndim, axes)) if any(axes.count(el) > 1 for el in axes): raise ValueError('duplicate value in "axis"') return axes Validator.check_axis_in_range(axes, ndim) return (axes % ndim,) @staticmethod def max_(*args): return max(*args) @staticmethod def min_(*args): return min(*args) @staticmethod def expanded_shape(ndim, axis_size, axis): """ Returns a shape with size = 1 for all dimensions except at axis. """ return tuple(axis_size if i == axis else 1 for i in range(ndim)) @staticmethod def tuple_slice(tup, start, end): """get sliced tuple from start and end.""" return tup[start:end] @staticmethod def infer_out_shape(*shapes): """ Returns shape of output after broadcasting. Raises ValueError if shapes cannot be broadcast. """ shape_out = deque() reversed_shapes = map(reversed, shapes) for items in zip_longest(*reversed_shapes, fillvalue=1): max_size = 0 if 0 in items else max(items) if any(item not in (1, max_size) for item in items): raise ValueError(f'operands could not be broadcast together with shapes {*shapes,}') shape_out.appendleft(max_size) return tuple(shape_out) @staticmethod def get_log2_size(size): return math.ceil(math.log2(size)) @staticmethod def check_axis_type(axis, type_int=True, type_tuple=True, type_list=True): """Check axis argument type.""" if type_int and isinstance(axis, int): return True if (type_tuple and isinstance(axis, tuple)) or (type_list and isinstance(axis, list)): for ax in axis: if not isinstance(ax, int): raise TypeError(f"Each axis should be integer, but got {type(ax)} in {axis}.") return True type_str = "" if type_int: type_str += "int, " if type_tuple: type_str += "tuple, " if type_list: type_str += "list, " raise TypeError(f"Axis should be {type_str}but got {type(axis)}.") @staticmethod def check_and_canonicalize_axes(axes, ndim): """Check whether the types and values of input axes are valid.""" axes = axes if isinstance(axes, tuple) else (axes,) new_axes = () for ax in axes: if not isinstance(ax, int): raise TypeError((f"Each axis should be integer, but got {type(ax)} in {axes}.")) if not -ndim <= ax < ndim: raise ValueError(f'axis {ax} is out of bounds for array of dimension {ndim}') ax = ax if ax >= 0 else ax + ndim new_axes += (ax,) if any(new_axes.count(el) > 1 for el in new_axes): raise ValueError('duplicate value in "axis"') return new_axes @staticmethod def empty_compile(dtype, shape): """Returns an empty Tensor.""" return Tensor_(dtype, shape) @staticmethod def check_type_support(dtype, device, supported_dtypes): return dtype in supported_dtypes or not context.get_context('device_target') == device def check_input_format(input_param): """Judge input format.""" if input_param == "NCHW": return input_param raise ValueError("The data format must be NCHW.") def _expand_tuple(n_dimensions): """To expand a int number to tuple.""" def convert(m): if not isinstance(m, tuple): if isinstance(m, int) and not isinstance(m, bool): return tuple(repeat(m, n_dimensions)) raise TypeError("Input type must be int or tuple[int].") if not len(m) is n_dimensions: raise TypeError("Input tuple dimension is incorrect.") for i in m: if not isinstance(i, int) or isinstance(i, bool): raise TypeError("Incorrect type inside of a tuple, must be int!") return m return convert def _check_data_type_valid(data, valid_type): """Check data type valid.""" if valid_type is None: return data is None if isinstance(data, valid_type): if hasattr(data, 'size') and data.size == 0: msg = "Please provide non-empty data." logger.error(msg) raise ValueError(msg) return True return False def check_input_data(*data, data_class): """Input data check.""" for item in data: if isinstance(item, (list, tuple)): for v in item: check_input_data(v, data_class=data_class) elif isinstance(item, dict): for v in item.values(): check_input_data(v, data_class=data_class) else: if isinstance(data_class, (tuple, list)): ret = True in tuple(_check_data_type_valid(item, data_type) for data_type in data_class) else: ret = _check_data_type_valid(item, data_class) if not ret: data_class_str = tuple(i.__name__ if hasattr(i, '__name__') else i for i in data_class) \ if isinstance(data_class, (tuple, list)) else \ (data_class if data_class is None else data_class.__name__) raise ValueError(f'Please provide as model inputs either a single or ' f'a tuple or a list or a dict of {data_class_str}, ' f'but got part data type is {item if item is None else type(item).__name__}.') def check_output_data(data): """Output data check.""" if data is None: raise RuntimeError('Executor return data ' + str(data) + ', please check your net or input data.') once = _expand_tuple(1) twice = _expand_tuple(2) triple = _expand_tuple(3) def args_type_check(*type_args, **type_kwargs): """Check whether input data type is correct.""" def type_check(func): sig = inspect.signature(func) bound_types = sig.bind_partial(*type_args, **type_kwargs).arguments @wraps(func) def wrapper(*args, **kwargs): nonlocal bound_types bound_values = sig.bind(*args, **kwargs) argument_dict = bound_values.arguments if "kwargs" in bound_types: bound_types = bound_types["kwargs"] if "kwargs" in argument_dict: argument_dict = argument_dict["kwargs"] for name, value in argument_dict.items(): if name in bound_types: if value is not None and not isinstance(value, bound_types[name]): raise TypeError('Argument {} must be {}'.format(name, bound_types[name])) return func(*args, **kwargs) return wrapper return type_check _set_record = {} def args_unreset_check(*unreset_args, **unreset_kwargs): """Check the entered non repeatable setting properties.""" def unreset_check(func): sig = inspect.signature(func) bound_unreset = sig.bind_partial(*unreset_args, **unreset_kwargs).arguments @wraps(func) def wrapper(*args, **kwargs): nonlocal bound_unreset bound_values = sig.bind(*args, **kwargs) argument_dict = bound_values.arguments if "kwargs" in bound_unreset: bound_unreset = bound_unreset["kwargs"] if "kwargs" in argument_dict: argument_dict = argument_dict["kwargs"] for name, value in argument_dict.items(): if name in _set_record.keys(): raise TypeError('Argument {} is non-renewable parameter {}.'.format(name, bound_unreset[name])) if name in bound_unreset: _set_record[name] = value return func(*args, **kwargs) return wrapper return unreset_check