/** * Copyright 2020-2021 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include "debug/debugger/debugger.h" #include "debug/data_dump/dump_json_parser.h" #include "pipeline/jit/pipeline.h" #include "backend/session/anf_runtime_algorithm.h" #include "runtime/device/kernel_runtime_manager.h" #include "runtime/device/kernel_runtime.h" #include "debug/data_dump/e2e_dump.h" #include "utils/config_manager.h" #include "debug/env_config_parser.h" #include "utils/comm_manager.h" #include "runtime/hardware/device_context_manager.h" #include "debug/anf_ir_dump.h" #include "debug/anf_ir_utils.h" #ifdef ENABLE_DEBUGGER #include "debug/debugger/proto_exporter.h" #else #include "debug/debugger/proto_exporter_stub.h" #endif using debugger::Chunk; using debugger::EventReply; using debugger::GraphProto; using debugger::ModelProto; using debugger::Statistics; using debugger::TensorProto; using debugger::WatchCondition; using debugger::WatchCondition_Condition_inf; using debugger::WatchCondition_Condition_nan; using debugger::WatchCondition_Parameter; using debugger::WatchNode; using debugger::WatchpointHit; namespace mindspore { static constexpr auto g_chunk_size = 1024 * 1024 * 3; static constexpr int32_t heartbeat_period_second = 30; DebuggerPtr Debugger::debugger_ = nullptr; std::mutex Debugger::instance_lock_; Debugger::Debugger() : grpc_client_(nullptr), debug_services_(nullptr), heartbeat_thread_(nullptr), device_id_(0), device_target_(""), num_step_(0), debugger_enabled_(false), suspended_at_last_kernel_(false), run_level_(""), node_name_(""), cur_name_(""), training_done_(false), is_dataset_graph_(false), partial_memory_(false), initial_suspend_(true), enable_heartbeat_(false), not_dataset_graph_sum_(0), version_("") { CheckDebuggerEnabledParam(); auto ms_context = MsContext::GetInstance(); MS_EXCEPTION_IF_NULL(ms_context); std::string device_target = ms_context->get_param(MS_CTX_DEVICE_TARGET); MS_LOG(INFO) << "Debugger got device_target: " << device_target; if (device_target == kCPUDevice) { MS_LOG(WARNING) << "Not enabling debugger. Debugger does not support CPU."; } else if (CheckDebuggerEnabled()) { // configure partial memory reuse partial_memory_ = CheckDebuggerPartialMemoryEnabled(); // switch memory reuse on or off EnvConfigParser::GetInstance().SetSysMemreuse(partial_memory_); // print some message about memory reuse to user if (partial_memory_) { MS_LOG(WARNING) << "Partial Memory Reuse is enabled. Note: 1. Please only set watchpoints before running the first " "step. 2. Tensor values are only available for nodes that are watched by any watchpoint."; } else { MS_LOG(WARNING) << "Memory Reuse is disabled. Set environment variable MS_DEBUGGER_PARTIAL_MEM=1 to reduce memory " "usage for large models."; } } } void Debugger::Init(const uint32_t device_id, const std::string device_target) { // access lock for public method std::lock_guard a_lock(access_lock_); // save device_id MS_LOG(INFO) << "Debugger got device_id: " << device_id; device_id_ = device_id; MS_LOG(INFO) << "Debugger got device_target: " << device_target; device_target_ = device_target; version_ = "1.5.0"; } bool IsTypeDebuggerSupported(TypeId type) { if (type < TypeId::kNumberTypeEnd && type > TypeId::kNumberTypeBegin && type != kNumberTypeComplex64) { return true; } MS_LOG(INFO) << "Debugger does not support type: " << TypeIdLabel(type); return false; } void Debugger::EnableDebugger() { // reset some of the class members num_step_ = 0; debugger_enabled_ = false; enable_heartbeat_ = false; partial_memory_ = false; grpc_client_ = nullptr; debug_services_ = nullptr; heartbeat_thread_ = nullptr; // see if dump using debugger backend is enabled bool dump_enabled = CheckDebuggerDumpEnabled(); MS_LOG(INFO) << "dump using debugger backend = " << dump_enabled; // check if debugger enabled debugger_enabled_ = CheckDebuggerEnabled(); MS_LOG(INFO) << "debugger_enabled_ = " << debugger_enabled_; if (!debugger_enabled_ && !dump_enabled) { MS_LOG(INFO) << "Not enabling debugger. Set environment variable ENABLE_MS_DEBUGGER=1 to enable debugger."; return; } if (debugger_enabled_) { // configure grpc host std::string env_host_str = common::GetEnv("MS_DEBUGGER_HOST"); std::string host; if (!env_host_str.empty()) { if (CheckIp(env_host_str)) { MS_LOG(INFO) << "Getenv MS_DEBUGGER_HOST: " << env_host_str; host = env_host_str; } else { debugger_enabled_ = false; MS_EXCEPTION(ValueError) << "Environment variable MS_DEBUGGER_HOST isn't a valid IP address. " "Please set environment variable MS_DEBUGGER_HOST=x.x.x.x to a valid IP"; } } else { MS_LOG(INFO) << "Environment variable MS_DEBUGGER_HOST doesn't exist. Using default debugger host: localhost"; host = "localhost"; } // configure grpc port std::string env_port_str = common::GetEnv("MS_DEBUGGER_PORT"); std::string port; if (!env_port_str.empty()) { if (CheckPort(env_port_str)) { MS_LOG(INFO) << "Getenv MS_DEBUGGER_PORT: " << env_port_str; port = env_port_str; } else { debugger_enabled_ = false; MS_EXCEPTION(ValueError) << "Environment variable MS_DEBUGGER_PORT is not valid. Custom port ranging from 1 to " "65535"; } } else { port = "50051"; if (!CheckPort(port)) { MS_EXCEPTION(ValueError) << "Default MS_DEBUGGER_PORT is not valid. Custom port ranging from 1 to 65535"; } MS_LOG(INFO) << "Environment variable MS_DEBUGGER_PORT doesn't exist. Using default debugger port: 50051"; } // initialize grpc client grpc_client_ = std::make_unique(host, port); // initialize sending heartbeat heartbeat_thread_ = std::make_unique([this]() { SendHeartbeat(heartbeat_period_second); }); } debug_services_ = std::make_unique(); } void Debugger::CheckDatasetSinkMode() { if (CheckDebuggerDumpEnabled() && ConfigManager::GetInstance().dataset_mode() == DS_SINK_MODE) { MS_EXCEPTION(NotSupportError) << "e2e_dump not supported on GPU with dataset_sink_mode=True. Please set dataset_sink_mode=False"; } if (CheckDebuggerEnabled() && ConfigManager::GetInstance().dataset_mode() == DS_SINK_MODE) { MS_EXCEPTION(NotSupportError) << "Debugger is not supported with dataset_sink_mode=True. Please set dataset_sink_mode=False"; } } bool Debugger::CheckDebuggerDumpEnabled() const { // see if dump is enabled if (device_target_ == kGPUDevice) { return device::KernelRuntime::DumpDataEnabled(); } return false; } bool Debugger::CheckDebuggerEnabled() const { // get env variables to configure debugger std::string env_enable_str = common::GetEnv("ENABLE_MS_DEBUGGER"); if (!env_enable_str.empty()) { (void)std::transform(env_enable_str.begin(), env_enable_str.end(), env_enable_str.begin(), ::tolower); if ((env_enable_str == "1" || env_enable_str == "true") && device_target_ != kCPUDevice) { return true; } } return false; } void Debugger::CheckDebuggerEnabledParam() const { // check the value of env variable ENABLE_MS_DEBUGGER std::string env_enable_str = common::GetEnv("ENABLE_MS_DEBUGGER"); if (!env_enable_str.empty()) { (void)std::transform(env_enable_str.begin(), env_enable_str.end(), env_enable_str.begin(), ::tolower); if (env_enable_str != "0" && env_enable_str != "1" && env_enable_str != "false" && env_enable_str != "true") { MS_LOG(WARNING) << "Env variable ENABLE_MS_DEBUGGER should be True/False/1/0 (case insensitive), but get: " << env_enable_str; } } } bool Debugger::CheckDebuggerPartialMemoryEnabled() const { std::string env_partial_mem_str = common::GetEnv("MS_DEBUGGER_PARTIAL_MEM"); if (!env_partial_mem_str.empty()) { MS_LOG(INFO) << "Getenv MS_DEBUGGER_PARTIAL_MEM: " << env_partial_mem_str; if (env_partial_mem_str == "1") { return true; } } return false; } bool Debugger::DebuggerBackendEnabled() const { return CheckDebuggerDumpEnabled() || CheckDebuggerEnabled(); } void Debugger::Reset() { // access lock for public method std::lock_guard a_lock(access_lock_); // reset components if (heartbeat_thread_ && heartbeat_thread_->joinable()) { SetEnableHeartbeat(false); heartbeat_thread_->join(); MS_LOG(INFO) << "Join Heartbeat thread."; } heartbeat_thread_ = nullptr; device_id_ = 0; device_target_ = ""; num_step_ = 0; debugger_enabled_ = false; is_dataset_graph_ = false; partial_memory_ = false; graph_ptr_ = nullptr; grpc_client_ = nullptr; debug_services_ = nullptr; graph_proto_list_.clear(); graph_ptr_list_.clear(); graph_ptr_step_vec_.clear(); MS_LOG(INFO) << "Release Debugger resource."; } void Debugger::PreExecuteGraphDebugger(const std::vector &graphs) { // Only GPU is supported for MindRTBackend if (device_target_ != kGPUDevice) { return; } E2eDump::UpdateIterGPUDump(); // Store graphs that are run in one step. graph_ptr_step_vec_ = graphs; for (size_t graph_index = 0; graph_index < graphs.size(); ++graph_index) { const auto &graph = graphs[graph_index]; if (debugger_) { debugger_->PreExecute(graph); } DumpSetup(graph); } } void Debugger::PreExecute(const KernelGraphPtr &graph_ptr) { MS_EXCEPTION_IF_NULL(graph_ptr); // access lock for public method std::lock_guard a_lock(access_lock_); CheckDatasetSinkMode(); auto graph_id = graph_ptr->graph_id(); // collect rungrap_ids to update step number in multigraph case if (!rungraph_id_list_.size()) { rungraph_id_list_.push_back(graph_id); } else { if (std::find(rungraph_id_list_.begin(), rungraph_id_list_.end(), graph_id) == rungraph_id_list_.end()) { rungraph_id_list_.push_back(graph_id); } } // multiple graphs if (graph_proto_list_.size() > 1) { // there are more than one graphs are not dataset_graph if (not_dataset_graph_sum_ > 0) { SendMultiGraphsAndClear(graph_ptr); } } else if (graph_proto_list_.size() == 1) { // single graph, and not the initial step if (device_target_ == kGPUDevice && num_step_ != 0) { if (debugger_enabled_ && !(run_level_ == "node" && suspended_at_last_kernel_)) { CommandLoop(); } debug_services_->ResetLoadedTensors(); } // In single graph case, reset graph_ptr_ to be nullptr for the initial step if (num_step_ == 0) { graph_ptr_ = nullptr; CheckGraphPtr(graph_ptr); } } else if (debugger_enabled_ && graph_id == rungraph_id_list_.front() && device_target_ == kGPUDevice) { // Multiple graph, and not the initial step, // stop only when receive the first sub run graph for each step // if we have stopped for the last kernel before, no need to stop again if (pipeline::GraphExecutorPy::GetDebugTerminate()) { return; } if (!(run_level_ == "node" && suspended_at_last_kernel_)) { CommandLoop(); } debug_services_->ResetLoadedTensors(); } // resets for the new graph suspended_at_last_kernel_ = false; } void Debugger::SendMultiGraphsAndClear(const KernelGraphPtr &graph_ptr) { // only try to enable debugger if they are not all dataset graphs if (!debugger_enabled_) { EnableDebugger(); } if (debugger_enabled_) { // only send compiled graphs once at the initial step. auto dbg_graph_ptr = graph_ptr_; // use current graph ptr to load parameters graph_ptr_ = graph_ptr; LoadParametersAndConst(); // revert graph ptr to original value graph_ptr_ = dbg_graph_ptr; SendMultiGraphsAndSuspend(graph_proto_list_); graph_proto_list_.clear(); } } bool Debugger::DumpDataEnabledIteration() const { auto &dump_json_parser = DumpJsonParser::GetInstance(); if (!dump_json_parser.e2e_dump_enabled()) { return false; } auto cur_iter = dump_json_parser.cur_dump_iter(); if (dump_json_parser.IsDumpIter(cur_iter)) { return true; } return false; } uint32_t Debugger::GetRankID() { auto ms_context = MsContext::GetInstance(); MS_EXCEPTION_IF_NULL(ms_context); std::string device_target = ms_context->get_param(MS_CTX_DEVICE_TARGET); uint32_t device_id = ms_context->get_param(MS_CTX_DEVICE_ID); const auto &device_context = device::DeviceContextManager::GetInstance().GetOrCreateDeviceContext({device_target, device_id}); uint32_t rank_id = device_context->GetRankID(); return rank_id; } void Debugger::Dump(const KernelGraphPtr &kernel_graph) const { uint32_t rank_id = GetRankID(); if (debugger_ && debugger_->DebuggerBackendEnabled()) { MS_EXCEPTION_IF_NULL(kernel_graph); (void)E2eDump::DumpParametersAndConstData(kernel_graph.get(), rank_id, debugger_.get()); } else { DumpJsonParser::GetInstance().UpdateDumpIter(); } } void Debugger::DumpSingleNode(const CNodePtr &node, uint32_t graph_id) { if (debugger_ && debugger_->DebuggerBackendEnabled()) { uint32_t rank_id = GetRankID(); (void)E2eDump::DumpSingleNodeData(node, graph_id, rank_id, debugger_.get()); } } void Debugger::DumpSetup(const KernelGraphPtr &kernel_graph) const { MS_LOG(INFO) << "Start!"; MS_EXCEPTION_IF_NULL(kernel_graph); E2eDump::DumpSetup(kernel_graph.get()); MS_LOG(INFO) << "Finish!"; } void Debugger::DumpInGraphCompiler(const KernelGraphPtr &kernel_graph) { // This function will be called for new GPU runtime using MindRTBackend auto &json_parser = DumpJsonParser::GetInstance(); if (json_parser.e2e_dump_enabled()) { uint32_t rank_id = GetRankID(); kernel_graph->set_root_graph_id(kernel_graph->graph_id()); std::string final_graph = "trace_code_graph_" + std::to_string(kernel_graph->graph_id()); std::string root_dir = json_parser.path() + "/rank_" + std::to_string(rank_id); std::string target_dir = root_dir + "/graphs"; std::string ir_file_path = target_dir + "/" + "ms_output_" + final_graph + ".ir"; DumpIRProtoWithSrcInfo(kernel_graph, final_graph, target_dir, kDebugWholeStack); DumpIR("trace_code_graph", kernel_graph, true, kWholeStack, ir_file_path); DumpGraphExeOrder("ms_execution_order_graph_" + std::to_string(kernel_graph->graph_id()) + ".csv", root_dir, kernel_graph->execution_order()); } } void Debugger::PostExecuteGraphDebugger() { // On CPU, update dump iteration, Parameters and consts are not dumped here if (device_target_ == kCPUDevice) { DumpJsonParser::GetInstance().UpdateDumpIter(); return; } // Only GPU is supported for MindRTBackend if (device_target_ != kGPUDevice) { return; } // LoadParametersAndConst for all the graphs that have been run in the current step if (debugger_) { for (auto graph : graph_ptr_step_vec_) { debugger_->LoadParametersAndConst(graph); } } // debug used for dump if (debugger_ && debugger_->CheckDebuggerDumpEnabled()) { // Dump Parameters and consts for (auto graph : graph_ptr_step_vec_) { debugger_->Dump(graph); if (!debugger_->debugger_enabled()) { debugger_->ClearCurrentData(); } } } if (debugger_) { debugger_->PostExecute(); } } void Debugger::PostExecute() { // access lock for public method std::lock_guard a_lock(access_lock_); if (pipeline::GraphExecutorPy::GetDebugTerminate()) { return; } if (debugger_ && debugger_->DebuggerBackendEnabled()) { // analyze tensor data and send the watchpoints been hit if (debugger_enabled_ && !is_dataset_graph_) { if (device_target_ != kGPUDevice) { num_step_++; } SendWatchpoints(CheckWatchpoints()); // no need to suspend at each graph for GPU, suspension happens in preExecute if (device_target_ != kGPUDevice) { CommandLoop(); } } // Only keep parameters in the current map // GPU ResetLoadedTensors happens in preExecute if (device_target_ != kGPUDevice) { debug_services_->ResetLoadedTensors(); } } } bool Debugger::ReadNodeDataRequired(const CNodePtr &kernel) const { if (debugger_enabled_ && !is_dataset_graph_) { auto is_watchpoint = debug_services_->IsWatchPoint(cur_name_, kernel); // if node has a watchpoint on it, is next_to node, or continue_to node then read the kernel tensor data if (is_watchpoint || (run_level_ == "node" && (node_name_ == "" || node_name_ == cur_name_))) { return true; } } return false; } void Debugger::PostExecuteNode(const CNodePtr &kernel, bool last_kernel) { // access lock for public method std::lock_guard a_lock(access_lock_); if (pipeline::GraphExecutorPy::GetDebugTerminate()) { return; } if (debugger_enabled_ && !is_dataset_graph_) { auto is_watchpoint = debug_services_->IsWatchPoint(cur_name_, kernel); // if kernel is watchpoint,and get hit. suspend. bool hit_empty_flag = true; if (is_watchpoint) { auto hits = CheckWatchpoints(cur_name_, kernel); if (!hits.empty()) { SendWatchpoints(hits); CommandLoop(); hit_empty_flag = false; } } if (hit_empty_flag && run_level_ == "node" && (node_name_ == "" || node_name_ == cur_name_)) { // if kernel is not watchpoint and is next_to or continue_to node, suspend // sets a bool to be checked in preExecute to avoid double stopping at last kernel in the last graph if (last_kernel) { suspended_at_last_kernel_ = true; } CommandLoop(); } return; } } void Debugger::LoadGraphs(const KernelGraphPtr &graph_ptr) { MS_EXCEPTION_IF_NULL(graph_ptr); if (graph_ptr_ != graph_ptr) { MS_LOG(INFO) << "LoadGraphs Debugger got new graph: " << graph_ptr->graph_id(); // save new graph_ptr graph_ptr_ = graph_ptr; CheckDatasetGraph(); if (!is_dataset_graph_) { // get proto for new graph_ptr auto graph_proto = GetGraphProto(graph_ptr); // add new graph proto to graph_proto_list_ graph_proto_list_.push_back(graph_proto); graph_ptr_list_.push_back(graph_ptr); not_dataset_graph_sum_++; } // reset is_dataset_graph to be false is_dataset_graph_ = false; } } // In single graph cases, check single graph ptr void Debugger::CheckGraphPtr(const KernelGraphPtr &graph_ptr) { MS_EXCEPTION_IF_NULL(graph_ptr); if (graph_ptr_ != graph_ptr) { MS_LOG(INFO) << "CheckGraphPtr Debugger got new graph: " << graph_ptr->graph_id(); // save new graph_ptr graph_ptr_ = graph_ptr; if (!is_dataset_graph_) { // only try to enable debugger if it is not a dataset graph EnableDebugger(); if (debugger_enabled_) { LoadParametersAndConst(); // get graph proto and send to Mindinsight auto graph_proto = graph_proto_list_.front(); SendGraphAndSuspend(graph_proto); } } } } void Debugger::CheckDatasetGraph() { // print parameter node names MS_EXCEPTION_IF_NULL(graph_ptr_); const auto ¶ms = graph_ptr_->inputs(); for (const auto ¶m : params) { MS_LOG(INFO) << "param: " << GetKernelNodeName(param); } // check if there is GetNext or InitDataSetQueue node const auto &nodes = graph_ptr_->execution_order(); for (const auto &node : nodes) { auto node_name = AnfAlgo::GetCNodeName(node); MS_LOG(INFO) << "node: " << GetKernelNodeName(node); if (node_name == "GetNext" || node_name == "InitDataSetQueue") { MS_LOG(INFO) << "Not enabling debugger for graph " << graph_ptr_->graph_id() << ": found dataset graph node " << node_name; is_dataset_graph_ = true; return; } } is_dataset_graph_ = false; } GraphProto Debugger::GetGraphProto(const KernelGraphPtr &graph_ptr) const { // convert kernel graph to debugger modelproto ModelProto model = GetDebuggerFuncGraphProto(graph_ptr); return model.graph(); } void Debugger::SendHeartbeat(int32_t period) { int num_heartbeat_fail = 0; const int max_num_heartbeat_fail = 5; const int retry_milliseconds = 500; Heartbeat heartbeat; heartbeat.set_message("Debugger is alive"); heartbeat.set_period(heartbeat_period_second); SetEnableHeartbeat(CheckDebuggerEnabled()); while (enable_heartbeat_) { MS_EXCEPTION_IF_NULL(grpc_client_); EventReply reply = grpc_client_->SendHeartbeat(heartbeat); if (reply.status() != reply.OK) { MS_LOG(ERROR) << "Error: SendHeartbeat failed"; num_heartbeat_fail++; if (num_heartbeat_fail >= max_num_heartbeat_fail) { MS_LOG(ERROR) << "Maximum number of failure for SendHeartbeat reached : exiting training session."; SetEnableHeartbeat(false); break; } else { MS_LOG(ERROR) << "Number of consecutive SendHeartbeat fail:" << num_heartbeat_fail; std::this_thread::sleep_for(std::chrono::milliseconds(retry_milliseconds)); } } else { std::this_thread::sleep_for(std::chrono::milliseconds(period * 1000)); } } } void Debugger::SendGraphAndSuspend(const GraphProto &graph_proto) { if (SendMetadata(true)) { // send graph to Mindinsight server MS_EXCEPTION_IF_NULL(grpc_client_); EventReply reply = grpc_client_->SendGraph(graph_proto); if (reply.status() != reply.OK) { MS_LOG(ERROR) << "Error: SendGraph failed"; } // enter command loop, wait and process commands CommandLoop(); } } bool Debugger::SendMetadata(bool version_check) { // prepare metadata MS_EXCEPTION_IF_NULL(graph_ptr_); std::string device_name = std::to_string(device_id_) + ":" + std::to_string(graph_ptr_->graph_id()); Metadata metadata; metadata.set_device_name(device_name); metadata.set_cur_step(num_step_); metadata.set_backend(device_target_); metadata.set_cur_node(cur_name_); metadata.set_training_done(training_done_); metadata.set_ms_version(version_); MS_LOG(INFO) << "Is training done?" << training_done_; // set graph number to not_dataset_graph_sum_ metadata.set_graph_num(not_dataset_graph_sum_); MS_EXCEPTION_IF_NULL(grpc_client_); EventReply reply_metadata = grpc_client_->SendMetadata(metadata); bool ret = false; if (reply_metadata.status() == reply_metadata.OK) { if (version_check) { // get type of the command in meta data reply, it should be version matched DebuggerCommand cmd = GetCommand(reply_metadata); if (cmd != DebuggerCommand::kVersionMatchedCMD) { MS_LOG(ERROR) << "MindInsight version is too old, Mindspore version is " << version_; Exit(); } else { if (GetMiVersionMatched(reply_metadata)) { MS_LOG(INFO) << "MindSpore version is " << version_ << " matches MindInsight version."; ret = true; } else { MS_LOG(ERROR) << "MindSpore version " << version_ << ", did not match MindInsight version."; CommandLoop(); } } } else { // version check is done before so we can just return true here ret = true; } } else { MS_LOG(ERROR) << "Error: SendMetadata failed"; } return ret; } void Debugger::SendMultiGraphsAndSuspend(const std::list &graph_proto_list) { if (!SendMetadata(true)) { return; } MS_EXCEPTION_IF_NULL(grpc_client_); // send multiple graphs to mindinght server // split graph into chunks if one graph is larger than chunk size std::list chunked_graph_proto_list; Chunk chunk; for (auto graph : graph_proto_list) { std::string str = graph.SerializeAsString(); auto graph_size = graph.ByteSize(); if (graph_size > g_chunk_size) { auto sub_graph_str = grpc_client_->ChunkString(str, graph_size); for (unsigned int i = 0; i < sub_graph_str.size(); i++) { chunk.set_buffer(sub_graph_str[i]); if (i < sub_graph_str.size() - 1) { chunk.set_finished(false); } else { chunk.set_finished(true); } chunked_graph_proto_list.push_back(chunk); } } else { chunk.set_buffer(str); chunk.set_finished(true); chunked_graph_proto_list.push_back(chunk); } } EventReply reply = grpc_client_->SendMultiGraphs(chunked_graph_proto_list); if (reply.status() != reply.OK) { MS_LOG(ERROR) << "Error: SendGraph failed"; } // enter command loop, wait and process commands CommandLoop(); } void Debugger::CommandLoop() { // prepare metadata MS_EXCEPTION_IF_NULL(graph_ptr_); std::string device_name = std::to_string(device_id_) + ":" + std::to_string(graph_ptr_->graph_id()); Metadata metadata; metadata.set_device_name(device_name); metadata.set_cur_step(num_step_); metadata.set_backend(device_target_); metadata.set_cur_node(cur_name_); metadata.set_training_done(training_done_); // loop exit flag bool run = false; int num_wait_fail = 0; const int max_num_wait_fail = 5; while (!run) { // wait for command MS_EXCEPTION_IF_NULL(grpc_client_); EventReply reply = grpc_client_->WaitForCommand(metadata); if (reply.status() != reply.OK) { MS_LOG(ERROR) << "Error: WaitForCommand failed"; num_wait_fail++; if (num_wait_fail > max_num_wait_fail) { MS_LOG(ERROR) << "Maximum number of WaitForCommand retry reached: exiting training session."; MS_LOG(ERROR) << "Failed to connect to MindInsight debugger server. Please check the config " "of debugger host and port."; Exit(); run = true; } else { MS_LOG(ERROR) << "Number of consecutive WaitForCommand fail:" << num_wait_fail << "; Retry after " << num_wait_fail << "s"; std::this_thread::sleep_for(std::chrono::seconds(num_wait_fail)); } continue; } // get type of the command in reply DebuggerCommand cmd = GetCommand(reply); if (cmd == DebuggerCommand::kUnknownCMD) { MS_LOG(DEBUG) << "Debug: debugger received unknown command"; continue; } MS_LOG(INFO) << "received command: "; switch (cmd) { case DebuggerCommand::kUnknownCMD: MS_LOG(INFO) << "UnknownCMD"; break; case DebuggerCommand::kExitCMD: MS_LOG(INFO) << "ExitCMD"; Exit(true); // Used for debugger termination run = true; break; case DebuggerCommand::kRunCMD: ProcessRunCMD(reply); if (GetRunLevel(reply) != "recheck") { // exit loop run = true; } break; case DebuggerCommand::kSetCMD: ProcessKSetCMD(reply); break; case DebuggerCommand::kViewCMD: ProcessKViewCMD(reply); break; case DebuggerCommand::kVersionMatchedCMD: MS_LOG(ERROR) << "Received unexpected Version Matched CMD from Mindinsight."; Exit(); break; default: MS_LOG(ERROR) << "Received unknown CMD from Mindinsight"; Exit(); break; } } } void Debugger::ProcessRunCMD(const EventReply &reply) { MS_LOG(INFO) << "RunCMD"; if (GetRunLevel(reply) == "recheck") { MS_LOG(INFO) << "rechecking all watchpoints"; SendWatchpoints(CheckWatchpoints("", nullptr, true)); } else { // no longer the initial suspension. initial_suspend_ = false; // print run cmd content // get run_level and node_name run_level_ = GetRunLevel(reply); node_name_ = GetNodeName(reply); MS_LOG(INFO) << "run_level: " << run_level_; MS_LOG(INFO) << "node_name_: " << node_name_; } } void Debugger::ProcessKSetCMD(const EventReply &reply) { MS_LOG(INFO) << "SetCMD"; MS_LOG(INFO) << "id: " << GetWatchpointID(reply); MS_LOG(INFO) << "delete: " << GetWatchpointDelete(reply); if (GetWatchpointDelete(reply)) { MS_LOG(INFO) << "Deleting watchpoint"; RemoveWatchpoint(GetWatchpointID(reply)); } else { MS_LOG(INFO) << "Setting watchpoint"; MS_LOG(INFO) << "condition: " << GetWatchcondition(reply).condition(); ProtoVector recieved_nodes = GetWatchnodes(reply); for (const auto &node : recieved_nodes) { MS_LOG(INFO) << "node name: " << node.node_name(); MS_LOG(INFO) << "node type: " << node.node_type(); } ProtoVector parameters = GetParameters(reply); for (const auto ¶meter : parameters) { MS_LOG(INFO) << "parameter name: " << parameter.name(); MS_LOG(INFO) << "parameter is disabled: " << parameter.disabled(); MS_LOG(INFO) << "parameter value: " << parameter.value(); } SetWatchpoint(GetWatchnodes(reply), GetWatchcondition(reply), GetWatchpointID(reply), GetParameters(reply)); } } void Debugger::ProcessKViewCMD(const EventReply &reply) { MS_LOG(INFO) << "ViewCMD"; // print view cmd content ProtoVector received_tensors = GetTensors(reply); for (auto received_tensor : received_tensors) { MS_LOG(INFO) << "tensor node name: " << received_tensor.node_name(); MS_LOG(INFO) << "tensor slot: " << received_tensor.slot(); MS_LOG(INFO) << "tensor finished: " << std::boolalpha << received_tensor.finished() << std::noboolalpha; MS_LOG(INFO) << "tensor iter: " << received_tensor.iter(); MS_LOG(INFO) << "tensor truncate: " << std::boolalpha << received_tensor.truncate() << std::noboolalpha; } switch (reply.view_cmd().level()) { case debugger::ViewCMD_Level::ViewCMD_Level_base: MS_LOG(INFO) << "Tensor base request."; ViewBaseLevel(reply); break; case debugger::ViewCMD_Level::ViewCMD_Level_statistics: MS_LOG(INFO) << "Tensor statistics request."; ViewStatLevel(reply); break; case debugger::ViewCMD_Level::ViewCMD_Level_value: MS_LOG(INFO) << "Tensor value request."; ViewValueLevel(reply); break; default: MS_LOG(DEBUG) << "Debug: Unknown tensor info level"; break; } } void Debugger::ViewValueLevel(const EventReply &reply) { MS_LOG(INFO) << "Sending tensors"; std::list tensors = LoadTensors(GetTensors(reply)); // print view cmd reply for (auto tensor : tensors) { MS_LOG(INFO) << "tensor node name: " << tensor.node_name(); MS_LOG(INFO) << "tensor slot: " << tensor.slot(); MS_LOG(INFO) << "tensor finished: " << std::boolalpha << tensor.finished() << std::noboolalpha; MS_LOG(INFO) << "tensor iter: " << tensor.iter(); MS_LOG(INFO) << "tensor truncate: " << std::boolalpha << tensor.truncate() << std::noboolalpha; MS_LOG(INFO) << "tensor dims: "; for (auto dim : tensor.dims()) { MS_LOG(INFO) << dim << ","; } MS_LOG(INFO) << "tensor dtype: " << tensor.data_type(); } MS_EXCEPTION_IF_NULL(grpc_client_); EventReply send_tensors_reply = grpc_client_->SendTensors(tensors); if (send_tensors_reply.status() != debugger::EventReply::OK) { MS_LOG(ERROR) << "Error: SendTensors failed"; } } void Debugger::ViewStatLevel(const EventReply &reply) { std::list tensor_stats_list = LoadTensorsStat(GetTensors(reply)); EventReply send_tensors_stat_reply = grpc_client_->SendTensorStats(tensor_stats_list); if (send_tensors_stat_reply.status() != debugger::EventReply::OK) { MS_LOG(ERROR) << "Error: SendTensorsStats failed."; } } void Debugger::ViewBaseLevel(const EventReply &reply) { std::list tensor_base_list = LoadTensorsBase(GetTensors(reply)); EventReply send_tensor_base_reply = grpc_client_->SendTensorBase(tensor_base_list); if (send_tensor_base_reply.status() != debugger::EventReply::OK) { MS_LOG(ERROR) << "Error: SendTensorsBase failed."; } } void AddTensorProtoInfo(TensorProto *tensor_item, const TensorProto &tensor) { tensor_item->set_node_name(tensor.node_name()); tensor_item->set_slot(tensor.slot()); tensor_item->set_iter(tensor.iter()); tensor_item->set_truncate(tensor.truncate()); tensor_item->clear_tensor_content(); tensor_item->clear_data_type(); tensor_item->clear_dims(); } void AddTensorStatInfo(const DebugServices::TensorStat &tensor_stat, std::list *const tensor_summary_list) { if (tensor_summary_list == nullptr) { MS_LOG(DEBUG) << "tensor_summary_list is nullptr."; return; } TensorSummary tensor_summary_item; TensorBase *tensor_base = tensor_summary_item.mutable_tensor_base(); tensor_base->set_data_type(tensor_stat.dtype); tensor_base->set_data_size((int64_t)tensor_stat.data_size); for (auto elem : tensor_stat.shape) { tensor_base->add_shape(elem); } Statistics *tensor_statistics = tensor_summary_item.mutable_statistics(); tensor_statistics->set_is_bool(tensor_stat.is_bool); tensor_statistics->set_max_value(static_cast(tensor_stat.max_value)); tensor_statistics->set_min_value(static_cast(tensor_stat.min_value)); tensor_statistics->set_avg_value(static_cast(tensor_stat.avg_value)); tensor_statistics->set_count(tensor_stat.count); tensor_statistics->set_neg_zero_count(tensor_stat.neg_zero_count); tensor_statistics->set_pos_zero_count(tensor_stat.pos_zero_count); tensor_statistics->set_nan_count(tensor_stat.nan_count); tensor_statistics->set_neg_inf_count(tensor_stat.neg_inf_count); tensor_statistics->set_pos_inf_count(tensor_stat.pos_inf_count); tensor_statistics->set_zero_count(tensor_stat.zero_count); tensor_summary_list->push_back(tensor_summary_item); } void Debugger::SetWatchpoint(const ProtoVector &nodes, const WatchCondition &condition, const int32_t id, const ProtoVector ¶meters) { std::vector> check_node_list; std::vector parameter_list; std::transform(nodes.begin(), nodes.end(), std::back_inserter(check_node_list), [](const WatchNode &node) -> std::tuple { return make_tuple(node.node_name(), node.node_type() == "scope"); }); std::transform( parameters.begin(), parameters.end(), std::back_inserter(parameter_list), [](const WatchCondition_Parameter ¶meter) -> DebugServices::parameter_t { return DebugServices::parameter_t{parameter.name(), parameter.disabled(), parameter.value(), parameter.hit()}; }); debug_services_->AddWatchpoint(id, condition.condition(), condition.value(), check_node_list, parameter_list); } void Debugger::RemoveWatchpoint(const int32_t id) { debug_services_->RemoveWatchpoint(id); } std::list Debugger::LoadTensors(const ProtoVector &tensors) const { std::vector name; std::vector ret_name; std::vector data_ptr; std::vector data_size; std::vector dtype; std::vector> shape; std::transform(tensors.begin(), tensors.end(), std::back_inserter(name), GetTensorFullName); // ret_name will contain tensor names that are found in TensorLoader // items in ret_name will be in the same order with tensors if found debug_services_->ReadNodesTensors(name, &ret_name, &data_ptr, &data_size, &dtype, &shape); std::list tensor_list; size_t result_index = 0; for (auto tensor : tensors) { ssize_t size_iter = 0; if (result_index >= ret_name.size() || ret_name[result_index] != GetTensorFullName(tensor)) { TensorProto tensor_item; tensor_item.set_finished(true); AddTensorProtoInfo(&tensor_item, tensor); tensor_list.push_back(tensor_item); continue; } ssize_t tensor_size = data_size[result_index]; while (size_iter < tensor_size) { ssize_t chunk_size = g_chunk_size; TensorProto tensor_item; tensor_item.set_finished(false); if (tensor_size - size_iter <= g_chunk_size) { chunk_size = tensor_size - size_iter; tensor_item.set_finished(true); } AddTensorProtoInfo(&tensor_item, tensor); // return empty tensor if didn't find the requested tensor tensor_item.set_tensor_content(data_ptr[result_index] + size_iter, chunk_size); tensor_item.set_data_type((debugger::DataType)dtype[result_index]); for (auto &elem : shape[result_index]) { tensor_item.add_dims(elem); } // add tensor to result list and increment result_index to check next item in ret_name tensor_list.push_back(tensor_item); if (size_iter > INT_MAX - g_chunk_size) { MS_EXCEPTION(ValueError) << size_iter << " + " << g_chunk_size << " would lead to integer overflow!"; } size_iter += g_chunk_size; } result_index++; } return tensor_list; } std::list Debugger::LoadTensorsBase(const ProtoVector &tensors) const { std::list tensor_base_list; std::vector name; std::transform(tensors.begin(), tensors.end(), std::back_inserter(name), GetTensorFullName); std::vector>> result_list; debug_services_->SearchNodesTensors(name, &result_list); for (auto result : result_list) { auto tensor = std::get<1>(result); if (!tensor) { // tensor was not found, creating empty tensor base. TensorBase tensor_base_item; tensor_base_item.set_data_size(0); tensor_base_item.set_data_type(0); tensor_base_item.add_shape(0); tensor_base_list.push_back(tensor_base_item); continue; } // tensor was found creating tensor base object. TensorBase tensor_base_item; tensor_base_item.set_data_size((int64_t)tensor->GetByteSize()); tensor_base_item.set_data_type((int32_t)tensor->GetType()); for (auto elem : tensor->GetShape()) { tensor_base_item.add_shape(elem); } tensor_base_list.push_back(tensor_base_item); } return tensor_base_list; } std::list Debugger::LoadTensorsStat(const ProtoVector &tensors) const { std::list tensor_summary_list; std::vector name; std::transform(tensors.begin(), tensors.end(), std::back_inserter(name), GetTensorFullName); std::vector>> result_list; debug_services_->SearchNodesTensors(name, &result_list); for (auto result : result_list) { auto tensor = std::get<1>(result); if (!tensor) { // tensor was not found, creating empty tensor summary. DebugServices::TensorStat tensor_stat; AddTensorStatInfo(tensor_stat, &tensor_summary_list); continue; } // tensor was found creating tensor summary object. DebugServices::TensorStat tensor_stat = debug_services_->GetTensorStatistics(tensor); AddTensorStatInfo(tensor_stat, &tensor_summary_list); } return tensor_summary_list; } void Debugger::Exit(bool exit_success) { // debugger will notify main thread to exit because main thread can only exit at step boundary. MS_LOG(INFO) << "Exit Debugger"; SetEnableHeartbeat(false); pipeline::GraphExecutorPy::DebugTerminate(true, exit_success); } std::list Debugger::CheckWatchpoints(const std::string &watchnode, const CNodePtr &kernel, bool recheck) { std::vector name; std::vector slot; std::vector condition; std::vector watchpoint_id; std::vector overflow_ops; std::vector> parameters; std::vector error_codes; std::vector> tensor_list; if (watchnode.empty()) { tensor_list = debug_services_->GetTensor(); } else { tensor_list = debug_services_->GetNodeTensor(kernel); } std::vector file_list; MS_LOG(INFO) << "checkwatchpoints call for step " << num_step_; debug_services_->CheckWatchpoints(&name, &slot, &condition, &watchpoint_id, ¶meters, &error_codes, overflow_ops, file_list, &tensor_list, initial_suspend_, watchnode.empty(), recheck); std::list hits; for (unsigned int i = 0; i < name.size(); i++) { WatchpointHit hit; std::vector ¶meter = parameters[i]; hit.set_id(watchpoint_id[i]); hit.set_error_code(error_codes[i]); // here TensorProto act as a tensor indicator, not sending tensor content TensorProto *tensor_item = hit.mutable_tensor(); tensor_item->set_node_name(name[i]); tensor_item->set_slot(slot[i]); tensor_item->set_finished(true); WatchCondition *condition_item = hit.mutable_watch_condition(); condition_item->set_condition(debugger::WatchCondition_Condition(condition[i])); for (const auto &p : parameter) { auto x = condition_item->mutable_params()->Add(); x->set_name(p.name); x->set_disabled(p.disabled); x->set_value(p.value); x->set_hit(p.hit); x->set_actual_value(p.actual_value); } hits.push_back(hit); } return hits; } void Debugger::SendWatchpoints(const std::list &points) { // send info about watchpoint if (!points.empty()) { MS_EXCEPTION_IF_NULL(grpc_client_); EventReply reply = grpc_client_->SendWatchpointHits(points); if (reply.status() != reply.OK) { MS_LOG(ERROR) << "Error: SendWatchpointHits failed"; } } } bool Debugger::DumpTensorToFile(const std::string &tensor_name, bool trans_flag, const std::string &filepath, const std::string &host_fmt, const std::vector &host_shape, TypeId host_type, TypeId device_type, const std::string &addr_format, size_t slot) const { return debug_services_.get()->DumpTensorToFile(tensor_name, trans_flag, filepath, host_fmt, host_shape, host_type, device_type, addr_format, slot); } bool Debugger::LoadNewTensor(const std::shared_ptr &tensor, bool keep_prev) { return debug_services_.get()->LoadNewTensor(tensor, keep_prev); } bool Debugger::debugger_enabled() const { return debugger_enabled_; } DebuggerCommand GetCommand(const EventReply &reply) { DebuggerCommand cmd = DebuggerCommand::kUnknownCMD; switch (reply.cmd_case()) { case debugger::EventReply::CmdCase::kExit: cmd = DebuggerCommand::kExitCMD; break; case debugger::EventReply::CmdCase::kRunCmd: cmd = DebuggerCommand::kRunCMD; break; case debugger::EventReply::CmdCase::kSetCmd: cmd = DebuggerCommand::kSetCMD; break; case debugger::EventReply::CmdCase::kViewCmd: cmd = DebuggerCommand::kViewCMD; break; case debugger::EventReply::CmdCase::kVersionMatched: cmd = DebuggerCommand::kVersionMatchedCMD; break; default: MS_LOG(DEBUG) << "Debug: UnknownCMD"; break; } return cmd; } ProtoVector GetParameters(const EventReply &reply) { if (!reply.has_set_cmd() || !reply.set_cmd().has_watch_condition()) { MS_LOG(ERROR) << "Error: Can not get Parameters from command. Returning default value: ProtoVector()."; return ProtoVector(); } return reply.set_cmd().watch_condition().params(); } ProtoVector GetWatchnodes(const EventReply &reply) { if (!reply.has_set_cmd()) { MS_LOG(ERROR) << "Error: Not SetCMD, can not get WatchNodes. Returning default value: ProtoVector()."; return ProtoVector(); } return reply.set_cmd().watch_nodes(); } std::string GetRunLevel(const EventReply &reply) { if (!reply.has_run_cmd()) { MS_LOG(ERROR) << "Error: Not RunCMD, can not get RunLevel. Returning default value: " ""; return ""; } return reply.run_cmd().run_level(); } std::string GetNodeName(const EventReply &reply) { if (!reply.has_run_cmd()) { MS_LOG(ERROR) << "Error: Not RunCMD, can not get NodeName. Returning default value: " ""; return ""; } return reply.run_cmd().node_name(); } WatchCondition GetWatchcondition(const EventReply &reply) { if (!reply.has_set_cmd() || !reply.set_cmd().has_watch_condition()) { MS_LOG(ERROR) << "Error: Can not get WatchCondition from command. Returning default value: WatchCondition()."; return WatchCondition(); } return reply.set_cmd().watch_condition(); } int32_t GetWatchpointID(const EventReply &reply) { if (!reply.has_set_cmd()) { MS_LOG(ERROR) << "Error: Not SetCMD, can not get Watchpoint ID. Returning default value: 0."; return 0; } return reply.set_cmd().id(); } bool GetWatchpointDelete(const EventReply &reply) { if (!reply.has_set_cmd()) { MS_LOG(ERROR) << "Error: Not SetCMD, can not get Watchpoint delete flag. Returning default value: false."; return false; } return reply.set_cmd().delete_(); } ProtoVector GetTensors(const EventReply &reply) { if (!reply.has_view_cmd()) { MS_LOG(ERROR) << "Error: Not ViewCMD, can not get Tensors. Returning default value: ProtoVector()."; return ProtoVector(); } return reply.view_cmd().tensors(); } std::string GetTensorFullName(const TensorProto &tensor) { string node_name = tensor.node_name(); if (tensor.truncate()) { // scopes in node name are separated by '/' // use the name without scope if truncate is true std::size_t found = node_name.find_last_of("/"); node_name = node_name.substr(found + 1); } return node_name + ":" + tensor.slot() + (tensor.iter() == "" ? "" : ":" + tensor.iter()); } bool GetMiVersionMatched(const EventReply &reply) { return reply.version_matched(); } bool Debugger::partial_memory() const { return partial_memory_; } void Debugger::SetEnableHeartbeat(bool enabled) { enable_heartbeat_ = enabled; } void Debugger::SetCurNode(const std::string &cur_name) { // access lock for public method std::lock_guard a_lock(access_lock_); cur_name_ = cur_name; } std::string Debugger::run_level() const { return run_level_; } void Debugger::SetTrainingDone(bool training_done) { training_done_ = training_done; } bool Debugger::CheckPort(const std::string &port) const { int num = 0; const int min_port_num = 1; const int max_port_num = 65535; const int decimal = 10; if (port[0] == '0' && port[1] != '\0') return false; int i = 0; while (port[i] != '\0') { if (port[i] < '0' || port[i] > '9') return false; num = num * decimal + (port[i] - '0'); if (num > max_port_num) return false; i++; } if (num < min_port_num) return false; return true; } bool Debugger::CheckIp(const std::string &host) const { std::regex reg_ip( "(25[0-4]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[1-9])" "[.](25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9])" "[.](25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9])" "[.](25[0-4]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[1-9])"); std::smatch smat; std::string host_str = host; return std::regex_match(host_str, smat, reg_ip); } uint32_t Debugger::GetFirstRunGraphId() const { return rungraph_id_list_.front(); } void Debugger::LoadSingleAnfnode(const AnfNodePtr &anf_node, const size_t output_index) { MS_EXCEPTION_IF_NULL(anf_node); if (!anf_node->isa() && !anf_node->isa()) { return; } // When MindRT is used, only ValueNodes and ParameterWeights can be loaded from device to host if (MsContext::GetInstance()->get_param(MS_CTX_ENABLE_MINDRT) && (device_target_ == kGPUDevice)) { if (!anf_node->isa() && !(anf_node->isa() && AnfAlgo::IsParameterWeight(anf_node->cast()))) { return; } } // for parameters and value nodes, set its execution order to be 0; int exec_order = 0; std::string node_name = GetKernelNodeName(anf_node); GetFileKernelName(NOT_NULL(&node_name)); // check if output adde exists, if not, return; if (!AnfAlgo::OutputAddrExist(anf_node, output_index)) { return; } auto addr = AnfAlgo::GetOutputAddr(anf_node, output_index); MS_EXCEPTION_IF_NULL(addr); auto type = AnfAlgo::GetOutputInferDataType(anf_node, output_index); if (!IsTypeDebuggerSupported(type)) { return; } auto format = kOpFormat_DEFAULT; string tensor_name = node_name + ':' + "0"; ShapeVector int_shapes = trans::GetRuntimePaddingShape(anf_node, output_index); bool keep_prev; if (anf_node->isa()) { keep_prev = true; debug_services_->MoveTensorCurrentToPrev(tensor_name); } else { keep_prev = false; } bool ret = addr->LoadMemToHost(tensor_name, exec_order, format, int_shapes, type, 0, keep_prev); if (!ret) { MS_LOG(ERROR) << "LoadMemToHost:" << ", tensor_name:" << tensor_name << ", host_format:" << format << ".!"; } } void Debugger::LoadParametersAndConst() { if (!(debugger_enabled_ || CheckDebuggerDumpEnabled())) return; MS_EXCEPTION_IF_NULL(graph_ptr_); // load parameters MS_LOG(INFO) << "Start to load Parameters for graph " << graph_ptr_->graph_id() << "."; const auto ¶meters = graph_ptr_->inputs(); for (auto &item : parameters) { LoadSingleAnfnode(item, PARAMETER_OUTPUT_INDEX); } // load value nodes // get all constant values from the graph MS_LOG(INFO) << "Start to load value nodes for graph " << graph_ptr_->graph_id() << "."; const auto value_nodes = graph_ptr_->graph_value_nodes(); for (auto &item : value_nodes) { LoadSingleAnfnode(item, VALUE_NODE_OUTPUT_INDEX); } } void Debugger::LoadParametersAndConst(const KernelGraphPtr &graph) { if (!(debugger_enabled_ || CheckDebuggerDumpEnabled())) return; MS_EXCEPTION_IF_NULL(graph); MS_EXCEPTION_IF_NULL(graph_ptr_); // load parameters MS_LOG(INFO) << "Start to load Parameters for graph " << graph->graph_id() << "."; const auto ¶meters = graph_ptr_->inputs(); for (auto &item : parameters) { LoadSingleAnfnode(item, PARAMETER_OUTPUT_INDEX); } // load value nodes // get all constant values from the graph MS_LOG(INFO) << "Start to load value nodes for graph " << graph->graph_id() << "."; const auto value_nodes = graph_ptr_->graph_value_nodes(); for (auto &item : value_nodes) { LoadSingleAnfnode(item, VALUE_NODE_OUTPUT_INDEX); } } void Debugger::LoadGraphOutputs() { if (!(debugger_enabled() && device_target_ == kAscendDevice)) return; MS_EXCEPTION_IF_NULL(graph_ptr_); const auto &apply_kernels = graph_ptr_->execution_order(); // for kernels, execution order starts from 1 int exec_order = 1; for (const auto &node : apply_kernels) { MS_EXCEPTION_IF_NULL(node); std::string kernel_name = GetKernelNodeName(node); auto output_size = AnfAlgo::GetOutputTensorNum(node); if (partial_memory_) { if (!debug_services_->IsWatchPoint(kernel_name, node)) { continue; } } for (size_t j = 0; j < output_size; ++j) { if (!AnfAlgo::OutputAddrExist(node, j)) { MS_LOG(INFO) << "Cannot find output addr for slot " << j << " for " << kernel_name; continue; } auto addr = AnfAlgo::GetOutputAddr(node, j); MS_EXCEPTION_IF_NULL(addr); auto type = AnfAlgo::GetOutputInferDataType(node, j); if (!IsTypeDebuggerSupported(type)) { continue; } auto format = kOpFormat_DEFAULT; string tensor_name = kernel_name + ':' + std::to_string(j); ShapeVector int_shapes = trans::GetRuntimePaddingShape(node, j); auto ret = addr->LoadMemToHost(tensor_name, exec_order, format, int_shapes, type, j, false); if (!ret) { MS_LOG(ERROR) << "LoadMemToHost:" << ", tensor_name:" << tensor_name << ", host_format:" << format << ".!"; } } exec_order = exec_order + 1; } } void Debugger::UpdateStepNum(const session::KernelGraph *graph) { MS_EXCEPTION_IF_NULL(graph); MS_EXCEPTION_IF_NULL(debugger_); // update step number if we are processing the first graph (to support multigraph) if (device_target_ == kGPUDevice && (debugger_enabled_ || device::KernelRuntime::DumpDataEnabledIteration()) && (graph->graph_id() == debugger_->GetFirstRunGraphId())) { // access lock for public method std::lock_guard a_lock(access_lock_); ++num_step_; } } void Debugger::UpdateStepNumGPU() { // UpdateStepNum with DebugActor::DebugOnStepEnd if (device_target_ == kGPUDevice && (debugger_enabled_ || DumpDataEnabledIteration())) { // access lock for public method std::lock_guard a_lock(access_lock_); ++num_step_; } } void Debugger::ClearCurrentData() { if ((device_target_ == kGPUDevice) && (debugger_enabled_ || device::KernelRuntime::DumpDataEnabledIteration())) { if (debug_services_) { debug_services_->EmptyCurrentTensor(); } else { MS_LOG(ERROR) << "debug_services_ is nullptr"; } } } bool Debugger::TensorExistsInCurrent(const std::string &tensor_name) { return debug_services_->TensorExistsInCurrent(tensor_name); } } // namespace mindspore