# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.nn import Dense from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn.optim import SGD from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="CPU") class NetSGD(nn.Cell): def __init__(self): super(NetSGD, self).__init__() self.batch_size = 1 self.reshape = P.Reshape() weight = Tensor(np.ones([10, 16]).astype(np.float32) * 0.01) self.fc1 = Dense(16, 10, weight_init=weight) def construct(self, input_x): output = self.reshape(input_x, (self.batch_size, -1)) output = self.fc1(output) return output @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_SGD(): epoch = 3 net = NetSGD() learning_rate = 0.1 momentum = 0.9 dampening = 0.0 weight_decay = 0.0 nesterov = True loss_scale = 1.0 optimizer = SGD(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum, dampening, weight_decay, nesterov, loss_scale) criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') net_with_criterion = WithLossCell(net, criterion) train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer train_network.set_train() losses = [] for _ in range(epoch): data = Tensor(np.arange(0, 16).reshape(1, 1, 4, 4).astype(np.float32) * 0.01) label = Tensor(np.array([0]).astype(np.int32)) loss = train_network(data, label) losses.append(loss.asnumpy()) last_loss = 100.0 for loss in losses: assert last_loss > loss last_loss = loss