# Copyright 2019-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function from mindspore.ops import operations as P class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.add = P.AddN() @ms_function def construct(self, x, y, z): return self.add((x, y, z)) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_net(): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") x = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float32) y = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float32) z = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float32) add = Net() output = add(Tensor(x), Tensor(y), Tensor(z)) expect_result = [[[[0., 3., 6., 9.], [12., 15., 18., 21.], [24., 27., 30., 33.]], [[36., 39., 42., 45.], [48., 51., 54., 57.], [60., 63., 66., 69.]], [[72., 75., 78., 81.], [84., 87., 90., 93.], [96., 99., 102., 105.]]]] assert (output.asnumpy() == expect_result).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_net_float64(): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") x = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64) y = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64) z = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64) add = Net() output = add(Tensor(x), Tensor(y), Tensor(z)) expect_result = np.array([[[[0., 3., 6., 9.], [12., 15., 18., 21.], [24., 27., 30., 33.]], [[36., 39., 42., 45.], [48., 51., 54., 57.], [60., 63., 66., 69.]], [[72., 75., 78., 81.], [84., 87., 90., 93.], [96., 99., 102., 105.]]]]).astype(np.float64) assert (output.asnumpy() == expect_result).all() context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64) y = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64) z = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64) add = Net() output = add(Tensor(x), Tensor(y), Tensor(z)) expect_result = np.array([[[[0., 3., 6., 9.], [12., 15., 18., 21.], [24., 27., 30., 33.]], [[36., 39., 42., 45.], [48., 51., 54., 57.], [60., 63., 66., 69.]], [[72., 75., 78., 81.], [84., 87., 90., 93.], [96., 99., 102., 105.]]]]).astype(np.float64) assert (output.asnumpy() == expect_result).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_net_int64(): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") x = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.int64) y = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.int64) z = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.int64) add = Net() output = add(Tensor(x), Tensor(y), Tensor(z)) expect_result = np.array([[[[0., 3., 6., 9.], [12., 15., 18., 21.], [24., 27., 30., 33.]], [[36., 39., 42., 45.], [48., 51., 54., 57.], [60., 63., 66., 69.]], [[72., 75., 78., 81.], [84., 87., 90., 93.], [96., 99., 102., 105.]]]]).astype(np.int64) assert (output.asnumpy() == expect_result).all() context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.int64) y = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.int64) z = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.int64) add = Net() output = add(Tensor(x), Tensor(y), Tensor(z)) expect_result = np.array([[[[0., 3., 6., 9.], [12., 15., 18., 21.], [24., 27., 30., 33.]], [[36., 39., 42., 45.], [48., 51., 54., 57.], [60., 63., 66., 69.]], [[72., 75., 78., 81.], [84., 87., 90., 93.], [96., 99., 102., 105.]]]]).astype(np.int64) assert (output.asnumpy() == expect_result).all()