# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor import mindspore.ops.operations._grad_ops as P context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") np.random.seed(1) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_atangrad_fp32(): x_np = np.random.rand(4, 2).astype(np.float32) * 10 dout_np = np.random.rand(4, 2).astype(np.float32) * 10 output_ms = P.AtanGrad()(Tensor(x_np), Tensor(dout_np)) output_np = dout_np / (1 + np.square(x_np)) assert np.allclose(output_ms.asnumpy(), output_np, 1e-4, 1e-4) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_atangrad_fp16(): x_np = np.random.rand(4, 2).astype(np.float16) * 10 dout_np = np.random.rand(4, 2).astype(np.float16) * 10 output_ms = P.AtanGrad()(Tensor(x_np), Tensor(dout_np)) output_np = dout_np.astype(np.float32) / (1 + np.square(x_np.astype(np.float32))) assert np.allclose(output_ms.asnumpy(), output_np.astype(np.float16), 1e-3, 1e-3)