# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function from mindspore.ops import operations as P from mindspore.ops.operations import _inner_ops as inner x0 = np.random.rand(2, 3, 4, 4).astype(np.float32) axis0 = 3 keep_dims0 = True x1 = np.random.rand(2, 3, 4, 4).astype(np.float32) axis1 = 3 keep_dims1 = False x2 = np.random.rand(2, 3, 1, 4).astype(np.float32) axis2 = 2 keep_dims2 = True x3 = np.random.rand(2, 3, 1, 4).astype(np.float32) axis3 = 2 keep_dims3 = False x4 = np.random.rand(2, 3, 4, 1).astype(np.float32) axis4 = 3 keep_dims4 = True x5 = np.random.rand(2, 3, 4, 1).astype(np.float32) axis5 = 3 keep_dims5 = False x6 = np.random.rand(2, 3, 4, 4).astype(np.float32) axis6 = (1, 2) keep_dims6 = False x7 = np.random.rand(2, 3, 4, 4).astype(np.float32) axis7 = (1, 2) keep_dims7 = True x8 = np.random.rand(2, 1, 1, 4).astype(np.float32) axis8 = (1, 2) keep_dims8 = True x9 = np.random.rand(2, 1, 1, 4).astype(np.float32) axis9 = (1, 2) keep_dims9 = False x10 = np.random.rand(2, 3, 4, 4).astype(np.float32) axis10 = (0, 1, 2, 3) keep_dims10 = False x11 = np.random.rand(1, 1, 1, 1).astype(np.float32) axis11 = (0, 1, 2, 3) keep_dims11 = False x12 = np.random.rand(2, 3, 4, 4, 5, 6).astype(np.float32) axis12 = -2 keep_dims12 = False x13 = np.random.rand(2, 3, 4, 4).astype(np.float32) axis13 = (-2, -1) keep_dims13 = True x14 = np.random.rand(1, 1, 1, 1).astype(np.float32) axis14 = () np_axis14 = None keep_dims14 = True class ReduceMean(nn.Cell): def __init__(self): super(ReduceMean, self).__init__() self.x0 = Tensor(x0) self.axis0 = axis0 self.keep_dims0 = keep_dims0 self.x1 = Tensor(x1) self.axis1 = axis1 self.keep_dims1 = keep_dims1 self.x2 = Tensor(x2) self.axis2 = axis2 self.keep_dims2 = keep_dims2 self.x3 = Tensor(x3) self.axis3 = axis3 self.keep_dims3 = keep_dims3 self.x4 = Tensor(x4) self.axis4 = axis4 self.keep_dims4 = keep_dims4 self.x5 = Tensor(x5) self.axis5 = axis5 self.keep_dims5 = keep_dims5 self.x6 = Tensor(x6) self.axis6 = axis6 self.keep_dims6 = keep_dims6 self.x7 = Tensor(x7) self.axis7 = axis7 self.keep_dims7 = keep_dims7 self.x8 = Tensor(x8) self.axis8 = axis8 self.keep_dims8 = keep_dims8 self.x9 = Tensor(x9) self.axis9 = axis9 self.keep_dims9 = keep_dims9 self.x10 = Tensor(x10) self.axis10 = axis10 self.keep_dims10 = keep_dims10 self.x11 = Tensor(x11) self.axis11 = axis11 self.keep_dims11 = keep_dims11 self.x12 = Tensor(x12) self.axis12 = axis12 self.keep_dims12 = keep_dims12 self.x13 = Tensor(x13) self.axis13 = axis13 self.keep_dims13 = keep_dims13 self.x14 = Tensor(x14) self.axis14 = axis14 self.keep_dims14 = keep_dims14 @ms_function def construct(self): return (P.ReduceMean(self.keep_dims0)(self.x0, self.axis0), P.ReduceMean(self.keep_dims1)(self.x1, self.axis1), P.ReduceMean(self.keep_dims2)(self.x2, self.axis2), P.ReduceMean(self.keep_dims3)(self.x3, self.axis3), P.ReduceMean(self.keep_dims4)(self.x4, self.axis4), P.ReduceMean(self.keep_dims5)(self.x5, self.axis5), P.ReduceMean(self.keep_dims6)(self.x6, self.axis6), P.ReduceMean(self.keep_dims7)(self.x7, self.axis7), P.ReduceMean(self.keep_dims8)(self.x8, self.axis8), P.ReduceMean(self.keep_dims9)(self.x9, self.axis9), P.ReduceMean(self.keep_dims10)(self.x10, self.axis10), P.ReduceMean(self.keep_dims11)(self.x11, self.axis11), P.ReduceMean(self.keep_dims12)(self.x12, self.axis12), P.ReduceMean(self.keep_dims13)(self.x13, self.axis13), P.ReduceMean(self.keep_dims14)(self.x14, self.axis14)) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_ReduceMean(): context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') reduce_mean = ReduceMean() output = reduce_mean() expect0 = np.mean(x0, axis=axis0, keepdims=keep_dims0) diff0 = abs(output[0].asnumpy() - expect0) error0 = np.ones(shape=expect0.shape) * 1.0e-5 assert np.all(diff0 < error0) assert output[0].shape == expect0.shape expect1 = np.mean(x1, axis=axis1, keepdims=keep_dims1) diff1 = abs(output[1].asnumpy() - expect1) error1 = np.ones(shape=expect1.shape) * 1.0e-5 assert np.all(diff1 < error1) assert output[1].shape == expect1.shape expect2 = np.mean(x2, axis=axis2, keepdims=keep_dims2) diff2 = abs(output[2].asnumpy() - expect2) error2 = np.ones(shape=expect2.shape) * 1.0e-5 assert np.all(diff2 < error2) assert output[2].shape == expect2.shape expect3 = np.mean(x3, axis=axis3, keepdims=keep_dims3) diff3 = abs(output[3].asnumpy() - expect3) error3 = np.ones(shape=expect3.shape) * 1.0e-5 assert np.all(diff3 < error3) assert output[3].shape == expect3.shape expect4 = np.mean(x4, axis=axis4, keepdims=keep_dims4) diff4 = abs(output[4].asnumpy() - expect4) error4 = np.ones(shape=expect4.shape) * 1.0e-5 assert np.all(diff4 < error4) assert output[4].shape == expect4.shape expect5 = np.mean(x5, axis=axis5, keepdims=keep_dims5) diff5 = abs(output[5].asnumpy() - expect5) error5 = np.ones(shape=expect5.shape) * 1.0e-5 assert np.all(diff5 < error5) assert output[5].shape == expect5.shape expect6 = np.mean(x6, axis=axis6, keepdims=keep_dims6) diff6 = abs(output[6].asnumpy() - expect6) error6 = np.ones(shape=expect6.shape) * 1.0e-5 assert np.all(diff6 < error6) assert output[6].shape == expect6.shape expect7 = np.mean(x7, axis=axis7, keepdims=keep_dims7) diff7 = abs(output[7].asnumpy() - expect7) error7 = np.ones(shape=expect7.shape) * 1.0e-5 assert np.all(diff7 < error7) assert output[7].shape == expect7.shape expect8 = np.mean(x8, axis=axis8, keepdims=keep_dims8) diff8 = abs(output[8].asnumpy() - expect8) error8 = np.ones(shape=expect8.shape) * 1.0e-5 assert np.all(diff8 < error8) assert output[8].shape == expect8.shape expect9 = np.mean(x9, axis=axis9, keepdims=keep_dims9) diff9 = abs(output[9].asnumpy() - expect9) error9 = np.ones(shape=expect9.shape) * 1.0e-5 assert np.all(diff9 < error9) assert output[9].shape == expect9.shape expect10 = np.mean(x10, axis=axis10, keepdims=keep_dims10) diff10 = abs(output[10].asnumpy() - expect10) error10 = np.ones(shape=expect10.shape) * 1.0e-5 assert np.all(diff10 < error10) assert output[10].shape == expect10.shape expect11 = np.mean(x11, axis=axis11, keepdims=keep_dims11) diff11 = abs(output[11].asnumpy() - expect11) error11 = np.ones(shape=expect11.shape) * 1.0e-5 assert np.all(diff11 < error11) assert output[11].shape == expect11.shape expect12 = np.mean(x12, axis=axis12, keepdims=keep_dims12) diff12 = abs(output[12].asnumpy() - expect12) error12 = np.ones(shape=expect12.shape) * 1.0e-5 assert np.all(diff12 < error12) assert output[12].shape == expect12.shape expect13 = np.mean(x13, axis=axis13, keepdims=keep_dims13) diff13 = abs(output[13].asnumpy() - expect13) error13 = np.ones(shape=expect13.shape) * 1.0e-5 assert np.all(diff13 < error13) assert output[13].shape == expect13.shape expect14 = np.mean(x14, axis=np_axis14, keepdims=keep_dims14) diff14 = abs(output[14].asnumpy() - expect14) error14 = np.ones(shape=expect14.shape) * 1.0e-5 assert np.all(diff14 < error14) assert output[14].shape == expect14.shape class ReduceMeanDynamic(nn.Cell): def __init__(self, x, axis, keepdims=False): super(ReduceMeanDynamic, self).__init__() self.test_dynamic = inner.GpuConvertToDynamicShape() self.reducemean = P.ReduceMean(keep_dims=keepdims) self.x = x self.axis = axis def construct(self): dynamic_x = self.test_dynamic(self.x) output = self.reducemean(dynamic_x, self.axis) return output @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_reduce_mean_keepdims_true(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net1 = ReduceMeanDynamic(Tensor(x14), axis14, keepdims=True) net2 = ReduceMeanDynamic(Tensor(x0), axis0, keepdims=True) output1 = net1() output2 = net2() expect_1 = np.mean(x14, axis=np_axis14, keepdims=True) diff_1 = abs(output1.asnumpy() - expect_1) error_1 = np.ones(shape=expect_1.shape) * 1.0e-5 assert np.all(diff_1 < error_1) assert output1.shape == expect_1.shape expect_2 = np.mean(x0, axis=axis0, keepdims=True) diff_2 = abs(output2.asnumpy() - expect_2) error_2 = np.ones(shape=expect_2.shape) * 1.0e-5 assert np.all(diff_2 < error_2) assert output2.shape == expect_2.shape @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_reduce_mean_keepdims_false(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = ReduceMeanDynamic(Tensor(x12), axis12, keepdims=False) output = net() expect = np.mean(x12, axis=axis12, keepdims=False) diff = abs(output.asnumpy() - expect) error = np.ones(shape=expect.shape) * 1.0e-5 assert np.all(diff < error) assert output.shape == expect.shape