# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_tensor_setitem """ import numpy as onp import pytest from mindspore import Tensor, context from mindspore.nn import Cell from mindspore import dtype as mstype def setup_module(): context.set_context(mode=context.PYNATIVE_MODE) def setup_testcase(input_np, case_fn): input_ms = Tensor(input_np) class TensorSetItem(Cell): def construct(self, x): return case_fn(x) class NumpySetItem(): def __call__(self, x): return case_fn(x) out_ms = TensorSetItem()(input_ms) out_np = NumpySetItem()(input_np) assert onp.all(out_ms.asnumpy() == out_np) class TensorSetItemByList(Cell): def construct(self, x): x[[0, 1], [1, 2], [1, 3]] = [3, 4] x[([0, 1], [0, 2], [1, 1])] = [10, 5] x[[0, 1], ..., [0, 1]] = 4 return x class NumpySetItemByList(): def __call__(self, x): x[[0, 1], [1, 2], [1, 3]] = [3, 4] x[([0, 1], [0, 2], [1, 1])] = [10, 5] x[[0, 1], ..., [0, 1]] = 4 return x @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_setitem_by_list(): x = onp.ones((2, 3, 4), dtype=onp.float32) def cases(x): x[[0, 1], [1, 2], [1, 3]] = [3, 4] x[([0, 1], [0, 2], [1, 1])] = [10, 5] x[[0, 1], ..., [0, 1]] = 4 return x setup_testcase(x, cases) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_setitem_with_sequence(): x = onp.ones((2, 3, 4), dtype=onp.float32) def cases(x): x[...] = [3] x[..., 1] = ([1, 2, 3], [4, 5, 6]) x[0] = ((0, 1, 2, 3), (4, 5, 6, 7), [8, 9, 10, 11]) x[1:2] = ((0, 1, 2, 3), (4, 5, 6, 7), [8, 9, 10, 11]) return x setup_testcase(x, cases) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_setitem_dtype(): x = onp.ones((2, 3, 4), dtype=onp.float32) def cases(x): x[...] = 3 x[..., 1] = 3.0 x[0] = True x[1:2] = ((0, False, 2, 3), (4.0, 5, 6, 7), [True, 9, 10, 11]) return x setup_testcase(x, cases) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_setitem_by_tuple_with_int(): x = onp.arange(24).reshape(2, 3, 4).astype(onp.float32) def cases(x): x[..., 2, False, 1] = -1 x[0, True, 0, None, True] = -2 x[0, ..., None] = -3 x[..., 0, None, 1, True, True, None] = -4 return x setup_testcase(x, cases) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_setitem_by_tuple_with_list(): x = onp.arange(24).reshape(2, 3, 4).astype(onp.float32) def cases(x): x[..., 2, False, 1] = [-1] x[0, True, 0, None, True] = [-2, -2, -2, -2] x[0, ..., None] = [[-3], [-3], [-3], [-3]] x[..., 0, None, 1, True, True, None] = [[[-4]], [[-4]]] x[None, True, [1, 0], (False, True, True), [2]] = [[2, 3]] return x setup_testcase(x, cases) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_setitem_by_nested_unit_list(): x = onp.arange(24).reshape(2, 3, 4).astype(onp.float32) def cases(x): x[[[[0]]], True] = -1 x[[1], ..., [[[[2]]]]] = -2 x[0, [[[2]]], [1]] = -3 return x setup_testcase(x, cases) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_setitem_with_broadcast(): x = onp.arange(2*3*4*5*6).reshape(2, 3, 4, 5, 6).astype(onp.float32) v1 = onp.full((1, 4, 5), -1).tolist() v2 = onp.full((4, 1, 6), -2).tolist() def cases(x): x[..., 4] = v1 x[0, 2] = v2 x[1, 0, ..., 3] = [[-3], [-3], [-3], [-3]] x[0, ..., 1, 3, 5] = -4 return x setup_testcase(x, cases) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_setitem_mul_by_scalar(): x = onp.ones((4, 5), dtype=onp.float32) def cases(x): x[1, :] = x[1, :]*2 x[:, 2] = x[:, 3]*3.0 return x setup_testcase(x, cases) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_setitem_by_slice(): x = onp.ones((3, 4, 5), dtype=onp.float32) def cases(x): x[1:2] = 2 x[-3:1] = 3 x[-10:3:2] = 4 x[5:0:3] = 5 x[5:5:5] = 6 x[-1:2] = 7 x[1:0:-1] = 8 return x setup_testcase(x, cases) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_setitem_by_tuple_of_slices(): x = onp.ones((3, 4, 5), dtype=onp.float32) def cases(x): x[1:2, 2] = 2 x[0, -4:1] = 3 x[1, -10:3:2] = 4 x[5:0:3, 3] = 5 x[1:1, 2:2] = 6 return x setup_testcase(x, cases) class TensorItemSetWithNumber(Cell): def construct(self, tensor, number_value): ret = tensor.itemset(number_value) return ret @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_itemset_with_number(): net = TensorItemSetWithNumber() input_1d_np = onp.ndarray([1]).astype(onp.float32) input_1d_ms = Tensor(input_1d_np, mstype.float32) input_3d_np = onp.arange(60).reshape(3, 4, 5).astype(onp.int32) input_3d_ms = Tensor(input_3d_np, mstype.float32) value_np_1, value_np_2 = 1, 2.0 output_1d_ms_1 = net(input_1d_ms, value_np_1) output_1d_ms_2 = net(input_1d_ms, value_np_2) input_1d_np.itemset(value_np_1) assert onp.all(output_1d_ms_1.asnumpy() == input_1d_np) input_1d_np.itemset(value_np_2) assert onp.all(output_1d_ms_2.asnumpy() == input_1d_np) with pytest.raises(IndexError): net(input_3d_ms, value_np_1) with pytest.raises(IndexError): net(input_3d_ms, value_np_2) class TensorItemSetByItemWithNumber(Cell): def construct(self, tensor, index, number_value): ret = tensor.itemset(index, number_value) return ret @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_setitem_dim_expand(): x = onp.ones((2, 3, 4), dtype=onp.float32) def cases(x): x[None, True, [1, 0], (False, True, True), [2]] = 2 x[([[0]]), ..., [[1]]] = [[[3, 3, 3]]] x[0:1] = [[2, 3, 4, 5]] x[..., (0, 1, 2), None, :, True, None] = [[[3], [3], [3], [3]]] return x setup_testcase(x, cases) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_itemset_by_number_with_number(): net = TensorItemSetByItemWithNumber() input_1d_np = onp.ndarray([1]).astype(onp.float32) input_1d_ms = Tensor(input_1d_np, mstype.float32) input_3d_np = onp.arange(60).reshape(3, 4, 5).astype(onp.int32) input_3d_ms = Tensor(input_3d_np, mstype.float32) index_np_1, index_np_2, index_np_3, index_np_4 = 0, 30, 60, 2.0 value_np_1, value_np_2 = 1, 2.0 output_1d_ms_1 = net(input_1d_ms, index_np_1, value_np_1) output_1d_ms_2 = net(input_1d_ms, index_np_1, value_np_2) output_3d_ms_1 = net(input_3d_ms, index_np_1, value_np_1) output_3d_ms_2 = net(output_3d_ms_1, index_np_1, value_np_2) output_3d_ms_3 = net(output_3d_ms_2, index_np_2, value_np_1) output_3d_ms_4 = net(output_3d_ms_3, index_np_2, value_np_2) input_1d_np.itemset(index_np_1, value_np_1) assert onp.all(output_1d_ms_1.asnumpy() == input_1d_np) input_1d_np.itemset(index_np_1, value_np_2) assert onp.all(output_1d_ms_2.asnumpy() == input_1d_np) input_3d_np.itemset(index_np_1, value_np_1) assert onp.all(output_3d_ms_1.asnumpy() == input_3d_np) input_3d_np.itemset(index_np_1, value_np_2) assert onp.all(output_3d_ms_2.asnumpy() == input_3d_np) input_3d_np.itemset(index_np_2, value_np_1) assert onp.all(output_3d_ms_3.asnumpy() == input_3d_np) input_3d_np.itemset(index_np_2, value_np_2) assert onp.all(output_3d_ms_4.asnumpy() == input_3d_np) with pytest.raises(IndexError): net(input_1d_ms, index_np_2, value_np_1) with pytest.raises(IndexError): net(input_1d_ms, index_np_2, value_np_2) with pytest.raises(TypeError): net(input_1d_ms, index_np_4, value_np_1) with pytest.raises(TypeError): net(input_1d_ms, index_np_4, value_np_2) with pytest.raises(IndexError): net(input_3d_ms, index_np_3, value_np_1) with pytest.raises(IndexError): net(input_3d_ms, index_np_3, value_np_2) with pytest.raises(TypeError): net(input_3d_ms, index_np_4, value_np_1) with pytest.raises(TypeError): net(input_3d_ms, index_np_4, value_np_2) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_itemset_by_tuple_with_number(): net = TensorItemSetByItemWithNumber() input_1d_np = onp.ndarray([1]).astype(onp.float32) input_1d_ms = Tensor(input_1d_np, mstype.float32) input_3d_np = onp.arange(60).reshape(3, 4, 5).astype(onp.int32) input_3d_ms = Tensor(input_3d_np, mstype.float32) index_np_1, index_np_2, index_np_3, index_np_4, index_np_5 = (0,), (1, 2), (1, 1, 0), (3, 4, 5), (1, 2, 3, 4) value_np_1, value_np_2 = 1, 2.0 output_1d_ms_1 = net(input_1d_ms, index_np_1, value_np_1) input_1d_np.itemset(index_np_1, value_np_1) assert onp.all(output_1d_ms_1.asnumpy() == input_1d_np) output_1d_ms_2 = net(input_1d_ms, index_np_1, value_np_2) input_1d_np.itemset(index_np_1, value_np_2) assert onp.all(output_1d_ms_2.asnumpy() == input_1d_np) output_3d_ms_1 = net(input_3d_ms, index_np_3, value_np_1) input_3d_np.itemset(index_np_3, value_np_1) assert onp.all(output_3d_ms_1.asnumpy() == input_3d_np) output_3d_ms_2 = net(input_3d_ms, index_np_3, value_np_2) input_3d_np.itemset(index_np_3, value_np_2) assert onp.all(output_3d_ms_2.asnumpy() == input_3d_np) with pytest.raises(IndexError): net(input_1d_ms, index_np_2, value_np_1) with pytest.raises(IndexError): net(input_1d_ms, index_np_2, value_np_2) with pytest.raises(IndexError): net(input_3d_ms, index_np_1, value_np_1) with pytest.raises(IndexError): net(input_3d_ms, index_np_1, value_np_2) with pytest.raises(IndexError): net(input_3d_ms, index_np_2, value_np_1) with pytest.raises(IndexError): net(input_3d_ms, index_np_2, value_np_2) with pytest.raises(IndexError): net(input_3d_ms, index_np_4, value_np_1) with pytest.raises(IndexError): net(input_3d_ms, index_np_4, value_np_2) with pytest.raises(IndexError): net(input_3d_ms, index_np_5, value_np_1) with pytest.raises(IndexError): net(input_3d_ms, index_np_5, value_np_2)